<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network

    The 4th Annual Brussels Climate Change Conference is announced for 26 - 27 February 2008. This joint CEPS/Epsilon conference will explore the key issues for a post-Kyoto agreement on climate change. The conference focuses on EU and global issues relating to global warming, and in particular looks at the following issues: - Post-2012 after Bali and before the Hokkaido G8 summit; Progress of EU integrated energy and climate package, burden-sharing renewables and technology; EU Emissions Trading Review with a focus on investment; Transport Climatepolicy.eu - January 28, 2007.

    Japan's Marubeni Corp. plans to begin importing a bioethanol compound from Brazil for use in biogasoline sold by petroleum wholesalers in Japan. The trading firm will import ETBE, which is synthesized from petroleum products and ethanol derived from sugar cane. The compound will be purchased from Brazilian petrochemical company Companhia Petroquimica do Sul and in February, Marubeni will supply 6,500 kilolitres of the ETBE, worth around US$7 million, to a biogasoline group made up of petroleum wholesalers. Wholesalers have been introducing biofuels since last April by mixing 7 per cent ETBE into gasoline. Plans call for 840 million liters of ETBE to be procured annually from domestic and foreign suppliers by 2010. Trading Markets - January 24, 2007.

    Toyota Tsusho Corp., Ohta Oil Mill Co. and Toyota Chemical Engineering Co., say it and two other firms have jointly developed a technology to produce biodiesel fuel at lower cost. Biodiesel is made by blending methanol into plant-derived oil. The new technology requires smaller amounts of methanol and alkali catalysts than conventional technologies. In addition, the new technology makes water removal facilities unnecessary. JCN Network - January 22, 2007.

    Finland's Metso Paper and SWISS COMBI - W. Kunz dryTec A.G. have entered a licence agreement for the SWISS COMBI belt dryer KUVO, which allows biomass to be dried in a low temperature environment and at high capacity, both for pulp & paper and bioenergy applications. Kauppalehti - January 22, 2007.

    Record warm summers cause extreme ice melt in Greenland: an international team of scientists, led by Dr Edward Hanna at the University of Sheffield, has found that recent warm summers have caused the most extreme Greenland ice melting in 50 years. The new research provides further evidence of a key impact of global warming and helps scientists place recent satellite observations of Greenland´s shrinking ice mass in a longer-term climatic context. Findings are published in the 15 January 2008 issue of Journal of Climate. University of Sheffield - January 15, 2007.

    Japan's Tsukishima Kikai Co. and Marubeni Corp. have together clinched an order from Oenon Holdings Inc. for a plant that will make bioethanol from rice. The Oenon group will invest around 4.4 billion yen (US$40.17 million) in the project, half of which will be covered by a subsidy from the Ministry of Agriculture, Forestry and Fisheries. The plant will initially produce bioethanol from imported rice, with plans to use Hokkaido-grown rice in the future. It will produce 5 million liters per year starting in 2009, increasing output to 15m liters in 2011. The facility will be able to produce as much as 50,000 liters of bioethanol from 125 tons of rice each day. Trading Markets - January 11, 2007.

    PetroSun, Inc. announced today that its subsidiary, PetroSun BioFuels Refining, has entered into a JV to construct and operate a biodiesel refinery near Coolidge, Arizona. The feedstock for the refinery will be algal oil produced by PetroSun BioFuels at algae farms to be located in Arizona. The refinery will have a capacity of thirty million gallons and will produce 100% renewable biodiesel. PetroSun BioFuels will process the residual algae biomass into ethanol. MarketWire - January 10, 2007.

    BlueFire Ethanol Fuels Inc, which develops and operates carbohydrate-based transportation fuel production facilities, has secured capital liquidity for corporate overhead and continued project development in the value of US$15 million with Quercus, an environmentally focused trust. BlueFire Ethanol Fuels - January 09, 2007.

    Some $170 billion in new technology development projects, infrastructure equipment and construction, and biofuel refineries will result from the ethanol production standards contained the new U.S. Energy Bill, says BIO, the global Biotechnology Industry Organization. According to Brent Erickson, BIO's executive vice president "Such a new energy infrastructure has not occurred in more than 100 years. We are at the point where we were in the 1850s when kerosene was first distilled and began to replace whale oil. This technology will be coming so fast that what we say today won't be true in two years." Chemical & Engineering News - January 07, 2007.

    Scottish and Southern Energy plc, the UK's second largest power company, has completed the acquisition of Slough Heat and Power Ltd from SEGRO plc for a total cash consideration of £49.25m. The 101MW CHP plant is the UK’s largest dedicated biomass energy facility fueled by wood chips, biomass and waste paper. Part of the plant is contracted under the Non Fossil Fuel Obligation and part of it produces over 200GWH of output qualifying for Renewable Obligation Certificates (ROCs), which is equivalent to around 90MW of wind generation. Scottish & Southern Energy - January 2, 2007.

    PetroChina Co Ltd, the country's largest oil and gas producer, plans to invest 800 million yuan to build an ethanol plant in Nanchong, in the southwestern province of Sichuan, its parent China National Petroleum Corp said. The ethanol plant has a designed annual capacity of 100,000 tons. ABCMoneyNews - December 21, 2007.

    Mexico passed legislation to promote biofuels last week, offering unspecified support to farmers that grow crops for the production of any renewable fuel. Agriculture Minister Alberto Cardenas said Mexico could expand biodiesel faster than ethanol. More soon. Reuters - December 20, 2007.

    Oxford Catalysts has placed an order worth approximately €700,000 (US$1 million) with the German company Amtec for the purchase of two Spider16 high throughput screening reactors. The first will be used to speed up the development of catalysts for hydrodesulphurisation (HDS). The second will be used to further the development of catalysts for use in gas to liquid (GTL) and Fischer-Tropsch processes which can be applied to next generation biofuels. AlphaGalileo - December 18, 2007.

    According to the Instituto Brasileiro de Geografia e Estatística (IBGE), Brazil's production of sugarcane will increase from 514,1 million tonnes this season, to a record 561,8 million tonnes in the 2008/09 cyclus - an increase of 9.3%. New numbers are also out for the 2007 harvest in Brazil's main sugarcane growing region, the Central-South: a record 425 million tonnes compared to 372,7 million tonnes in 2006, or a 14% increase. The estimate was provided by Unica – the União da Indústria de Cana-de-Açúcar. Jornal Cana - December 16, 2007.

    The University of East Anglia and the UK Met Office's Hadley Centre have today released preliminary global temperature figures for 2007, which show the top 11 warmest years all occurring in the last 13 years. The provisional global figure for 2007 using data from January to November, currently places the year as the seventh warmest on records dating back to 1850. The announcement comes as the Secretary-General of the World Meteorological Organization (WMO), Michel Jarraud, speaks at the Conference of the Parties (COP) in Bali. Eurekalert - December 13, 2007.

    The Royal Society of Chemistry has announced it will launch a new journal in summer 2008, Energy & Environmental Science, which will distinctly address both energy and environmental issues. In recognition of the importance of research in this subject, and the need for knowledge transfer between scientists throughout the world, from launch the RSC will make issues of Energy & Environmental Science available free of charge to readers via its website, for the first 18 months of publication. This journal will highlight the important role that the chemical sciences have in solving the energy problems we are facing today. It will link all aspects of energy and the environment by publishing research relating to energy conversion and storage, alternative fuel technologies, and environmental science. AlphaGalileo - December 10, 2007.

    Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. Therefore, soot development needs to be tackled at the source. Laser Induced Incandescence is a technique that reveals exactly where soot is generated and can be used by project partners to develop cleaner diesel engines. Terry Meyer, an Iowa State University assistant professor of mechanical engineering, is using similar laser technology to develop advanced sensors capable of screening the combustion behavior and soot characteristics specifically of biofuels. Eurekalert - December 7, 2007.

    Lithuania's first dedicated biofuel terminal has started operating in Klaipeda port. At the end of November 2007, the stevedoring company Vakaru krova (VK) started activities to manage transshipments. The infrastructure of the biodiesel complex allows for storage of up to 4000 cubic meters of products. During the first year, the terminal plans to transship about 70.000 tonnes of methyl ether, after that the capacities of the terminal would be increased. Investments to the project totaled €2.3 million. Agrimarket - December 5, 2007.

    New Holland supports the use of B100 biodiesel in all equipment with New Holland-manufactured diesel engines, including electronic injection engines with common rail technology. Overall, nearly 80 percent of the tractor and equipment manufacturer's New Holland-branded products with diesel engines are now available to operate on B100 biodiesel. Tractor and equipment maker John Deere meanwhile clarified its position for customers that want to use biodiesel blends up to B20. Grainnet - December 5, 2007.

    According to Wetlands International, an NGO, the Kyoto Protocol as it currently stands does not take into account possible emissions from palm oil grown on a particular type of land found in Indonesia and Malaysia, namely peatlands. Mongabay - December 5, 2007.

    Malaysia's oil & gas giant Petronas considers entering the biofuels sector. Zamri Jusoh, senior manager of Petronas' petroleum development management unit told reporters "of course our focus is on oil and gas, but I think as we move into the future we cannot ignore the importance of biofuels." AFP - December 5, 2007.

Creative Commons License

Monday, January 28, 2008

Biochar and carbon-negative bioenergy: boosts crop yields, fights climate change and reduces deforestation

A key book on the ancient soil improvement technique known as 'terra preta' has just been published. Compiled by Dr Christoph Steiner, who did extensive field work into the technique in Brazil,"Slash and Char as Alternative to Slash and Burn", yields a wealth of insights into the properties of these amazingly fertile 'dark earth soils', into the way they cycle nutrients, into their soil biology, chemical qualities and effects on plant growth. The work also suggests ways to replicate the technique today, with major potential benefits for mankind.

Terra preta soils are based on storing charcoal into the ground, which enhances the fertility, water retention qualities, and chemical and structural properties of the soil. New ways of producing char can be combined with the production of renewable carbon-negative bioenergy, through a process called pyrolysis (schematic, click to enlarge). Pyrolysis involves heating biomass in the absence of air or with very small, controlled amounts of oxygen. The process results in three main products: syngas, tar and char. Depending on the temperatures and amount of oxygen supplied to the system, the fractions of these products can be altered. The syngas can be used to generate electricity or biofuels, whereas the char fraction - called 'biochar' or 'agrichar' - becomes the soil amendment.

Energy and agricultural systems based on biochar could help tackle four of the world's most pressing issues all at once:
  1. they could allow resource poor farmers in the tropics to improve agricultural yields considerably and thus fight poverty and food insecurity;
  2. they can reduce global carbon emissions on a massive scale by creating a stable carbon sink: as plants take CO2 from the atmosphere, store it in their tissue and are then turned into biochar sequestered in soils, the carbon stays locked up for centuries, possibly millenia;
  3. they allow for the production of renewable carbon-negative bioenergy, either in the form of electricity or liquid fuels, and can thus bring energy to millions of the world's rural households who currently lack access to modern energy;
  4. they could become one of the keys to slowing tropical deforestation - itself a major source of greenhouse gas emissions - by prompting millions of shifting cultivators to change their current practise of 'slash and burn' agriculture to 'slash and char' instead. Shifting cultivation is caused by the rapid depletion of soils, forcing farmers to clear forest for new land every few years; in contrast, biochar amended soils would boost soil fertility, bring the farmers higher yields, thus limiting their need to take new land into cultivation.
The amazing potential of these synergies is being recognized by a rapidly growing group of scientists from across the world. They recently created an association called the International Biochar Initiative, aimed at disseminating the knowledge about this agroenergy system. They also strive towards recognition of the carbon sequestration technique by the United Nations Framework Convention on Climate Change (UNFCCC), which is being urged to take it up into the post-Kyoto protocol on climate change. If it did, poor farmers in the developing world would receive carbon credits for storing char into their infertile soils, while enjoying the multiple additional benefits of the system. However, this recognition will only occur with more research into biochar.

This is why Dr Steiner's book is so important: it is a key addition to the growing body of scientific knowledge on terra preta and char amended soils. Based on his PhD thesis, defended before the Faculty of Biology, Chemistry and Geosciences at the University of Bayreuth in Germany, it provides data from actual field trials at several sites in Brazil. Cropping experiments on poor, highly weathered soils there showed that, in combination with fertilizers, char can boost crop yields significantly. Besides discussing the complex agronomy of these results in depth, Steiner also explores indigenous knowledge systems surrounding terra preta, looks at the economics of the system and offers suggestions for integrated applications.

His conclusion hints at a possible future of addressing the intertwined issues of climate change, energy and agriculture in developing countries, through biochar:
Energy from crop residues could lower fossil energy consumption and CO2-emissions, and become a completely new income source for farmers and rural regions. The biochar byproduct of this process could serve to recycle nutrients, improve soils and sequester carbon. [...A] mixture of driving forces and technologies has the potential to use residual waste carbon-rich residues to reshape agriculture, balance carbon and address nutrient depletion.
The work of Dr Steiner and a growing group of terra preta experts is leading to a new vision based on coupling the production of biochar to bioenergy production and carbon markets. First of all, traditional charcoal production could be made more energy efficient and economic:
:: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::

Instead of relying on wood, biochar would be made from the vast streams of residual biomass that are currently not used productively. These crop residues are often burned by farmers on their fields, which causes major air pollution (especially in places like Northeast China and India). The practise also results in the release of vast quantities of carbon emissions into the atmosphere. In the process, the energy contained in this abundant source of biomass, gets lost.

New biomass conversion techniques, such as slow pyrolysis, are excellent for using these residues efficiently for the production of clean energy and would thus tackle a major environmental problem. These systems allow for the simultaneous production of both a large fraction of char and energy from the combustible, hydrogen syngas. The syngas can be used to fuel generators or turbines for electricity, or can be converted into liquid fuels via the Fischer-Tropsch process. Ideally, small, village-scale pyrolysis and energy generation systems would be designed that allow farming communities to produce their own decentralised electricity as well as the new black gold that can be turned into a carbon sink that offers a boost to their crop yields.

Depending on how much char is returned to the soil, the fuels and energy from the system can effectively become carbon-negative. That is, their use implies one actively removes CO2 from the atmosphere. Other renewables like wind or solar power are 'carbon neutral' at best, in that they do not add carbon emissions but do not remove the climate destructive gas from the atmosphere either. In contrast, carbon-negative bioenergy goes beyond carbon neutrality, by yielding 'negative emissions'.

Carbon-negative bioenergy leads to quite counter-intuitive effects: the more you were to use of it, the more you would be solving the climate crisis. The more miles you drive a car running on carbon-negative biofuel or bio-electricity, the more you would be cleaning up the atmosphere...

On the basis of this exciting agro-energy system, an interesting future becomes imaginable: depending on prevailing market conditions - the price of carbon and the price of electricity or fuels -, farmers will decide dynamically how much of a given biomass stream they will return to soils in the form of biochar, and how much they will turn into energy products they can sell or use locally. For the first operation they receive carbon credits which can be sold, for the latter they receive the price of the particular energy product they chose to produce.

Dr Christoph Steiner is a leading consultant on biochar amended soils. He presented his insights at the Bali Climate Conference, where they received positive feedback. His work and services can be found at Biochar.org. Steiner featured in a BBC documentary about terra preta titled "The Secret of El Dorado" as well as in the film "Terra Preta - Das schwarze Gold des Amazonas", by Peter Adler.

Schematic: biochar based carbon-negative bioenergy system: CC, Biopact, 2008.

Picture: Dr Steiner, during the filming of "Terra Preta - Das schwarze Gold des Amazonas", analysing cassava plants that got a growth boost because of char amended soils. Credit: Christoph Steiner, Biochar.org.

Steiner, Christoph: Slash and Char as Alternative to Slash and Burn. Soil charcoal amendments maintain soil fertility and establish a carbon sink, Cuvillier Verlag, Bayreuth, December 2007.

Christoph Steiner: Slash and Char as Alternative to Slash and Burn - English Summary [*.pdf], Dissertation, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Germany, November 2007.

BBC: "The Secret of El Dorado" available at Google video.

Peter Adler: "Terra Preta - Das schwarze Gold des Amazonas".

International Biochar Initiative.


Blogger erich said...

All the Bio-Char Companies and equipment manufactures I've found:

Carbon Diversion

Eprida: Sustainable Solutions for Global Concerns

BEST Pyrolysis, Inc. | Slow Pyrolysis - Biomass - Clean Energy - Renewable Ene

Dynamotive Energy Systems | The Evolution of Energy

Ensyn - Environmentally Friendly Energy and Chemicals

Agri-Therm, developing bio oils from agricultural waste

Advanced BioRefinery Inc.

Technology Review: Turning Slash into Cash

3R Environmental Technologies Ltd. (Edward Someus)
WEB: http://www.terrenum.net/

The company has Swedish origin and developing/designing medium and large scale carbonization units. The company is the licensor and technology provider to NviroClean Tech Ltd British American organization WEB: http://www.nvirocleantech.com and VERTUS Ltd.

Genesis Industries, as the current licensee of Eprida technology, provides you with a carbon negative Eprida energy machine at the same cost as going direct to Eprida. Through our technical support staff we also provide you with the information to obtain the best utilization of the biocharcoal that is produced by the machine. Recent research has shown that Eprida charcoal can increase plant productivity as it sequesters carbon in the soil, thus helping reduce atmospheric carbon dioxide.


5:26 AM  

Post a Comment

Links to this post:

Create a Link

<< Home