New plastic-based, nano-engineered CO2 capturing membrane developed
Carbon-negative bioenergy is becoming an ever more feasible concept (earlier post), but a crucial step needed to make it work is the development of cost-effective carbon-capture technologies. CO2 capture is by far the most expensive step in the carbon capture and storage (CCS) process. Techniques to trap the greenhouse gas before it enters the atmosphere can be divided in to three categories: pre-combustion, oxyfuel, and post-combustion capture (overview). The latter technique separates CO2 from the waste gases resulting from the combustion of (bio)fuels.
Current methods used for this type of filtration are expensive and require the use of chemicals. However, scientists are developing cheap membranes made from plastics that can perform the same task in a less costly way. Recently, a team from Australia announced progress on the creation of an inexpensive polypropylene membrane (earlier post).
Now researchers from the Membrane Research Group (MEMFO) at the Chemical Engineering Department of the Norwegian University of Science and Technology (NTNU) in Trondheim report on the development of a similar membrane, made from a plastic material that has been structured by means of nanotechnology. It catches CO2 while other waste gases pass freely.
The technology is effective, inexpensive and eco-friendly, and can be used for practically all types of CO2 removal from other gases. Its effectiveness increases proportionally to the concentration of CO2 in the gas. This latter point is important within the context of pre-combustion CO2 capture from biogas, which has a very large carbon dioxide fraction (earlier post).
The separation method occuring in the membrane is called 'facilitated transport' and is comparable to the way our lungs get rid of CO2 when we breathe. It is a complex but effective mechanism:
Nanoplastic
Various materials are used to make membranes. It could be plastic, carbon and/or ceramic materials. Membrane separation of gases is a highly complex process. The materials must be tailored in an advanced way to be adapted to separate specific gases. They must be long-lasting and stable:
climate change :: fossil fuels :: biomass :: bioenergy :: biofuels :: biogas :: biodiesel :: bio-energy with carbon storage :: carbon dioxide :: gas separation :: membrane :: nanotechnology ::
The new membrane is made of plastic, structured by means of nanotechnology to function according to the intention. Membranes based on nano-structured materials are eco-friendly and will reduce the costs of CO2 capture.
”With this method, we can remove more CO2 and obtain a cleaner product for smaller plants. Thus, it becomes less expensive,” Hägg says.
”We also have membranes today that are used to separate CO2 and have been used for a couple of decades, but these membranes are used for natural gases at high pressures, and are not suited for CO2 from flue gas. If the membrane separated poorly, very large amounts of the material is needed, and that makes this separation expensive,“ Professor Hägg explains.
Membranes have a major potential to become an inexpensive and eco-friendly alternative in the future. An international patent has been taken out for the new type. Manufacturers both in Europe and the USA have taken an interest in putting it into production, the professor reveals.
Testing in Europe
The Membrane Research Group (Memfo) recently joined a consortium of 26 European businesses and institutions within a project named NanoGloWa – Nanostructured Membranes against Global Warming. The consortium has received EUR 13 million to develop such membranes. One of these millions is reserved for Memfo.
According to Hägg, the new technology ought to be very interesting for coal-powered plants. “Within a five-year period, the plan is to test the membrane technology in four large power plants in Europe. We believe this will result in an international breakthrough for energy-efficient CO2 membranes,” she says.
When it comes to gas-powered plants, the concentration of CO2 is so low that the pressure in the waste gas must be increased before the gas can be cleaned with this method. However, Professor Hägg reveals that Statoil is currently developing a method for pressurized exhaust that could be combined with this membrane technology, and that would make it interesting for purification in gas-powered plants as well.
Besides CO2 purification in energy production, the method could be used for more or less any type of purification where carbon dioxide is removed from other gases.
”For instance, we are testing this method to purify CO2 from laughing gas in hospitals, and the results are promising,” concludes Professor May-Britt Hägg.
References:
AlphaGalileo: New membrane catches CO2 - September 19, 2007.
Norwegian University of Science and Technology: Membrane Research Group (Memfo), overview of research [*.pdf].
Biopact: Plastic membrane to bring down cost of carbon capture - August 15, 2007
Biopact: Pre-combustion CO2 capture from biogas - the way forward? - March 31, 2007
Article continues
Current methods used for this type of filtration are expensive and require the use of chemicals. However, scientists are developing cheap membranes made from plastics that can perform the same task in a less costly way. Recently, a team from Australia announced progress on the creation of an inexpensive polypropylene membrane (earlier post).
Now researchers from the Membrane Research Group (MEMFO) at the Chemical Engineering Department of the Norwegian University of Science and Technology (NTNU) in Trondheim report on the development of a similar membrane, made from a plastic material that has been structured by means of nanotechnology. It catches CO2 while other waste gases pass freely.
The technology is effective, inexpensive and eco-friendly, and can be used for practically all types of CO2 removal from other gases. Its effectiveness increases proportionally to the concentration of CO2 in the gas. This latter point is important within the context of pre-combustion CO2 capture from biogas, which has a very large carbon dioxide fraction (earlier post).
The separation method occuring in the membrane is called 'facilitated transport' and is comparable to the way our lungs get rid of CO2 when we breathe. It is a complex but effective mechanism:
The novelty is that instead of using a filter that separates directly between CO2 and other molecules, we use a so-called agent. It is a fixed carrier in the membrane that helps to convert the gas we want to remove. - May-Britt Hägg, NTNU Professor leading the Membrane Research Group (MEMFO)The agent helps so that the CO2 molecules in combination with moisture form the chemical formula HCO3 (bicarbonate), which is then quickly transported through the membrane. In this manner, the CO2 is released while the other gases are retained by the membrane:
Nanoplastic
Various materials are used to make membranes. It could be plastic, carbon and/or ceramic materials. Membrane separation of gases is a highly complex process. The materials must be tailored in an advanced way to be adapted to separate specific gases. They must be long-lasting and stable:

The new membrane is made of plastic, structured by means of nanotechnology to function according to the intention. Membranes based on nano-structured materials are eco-friendly and will reduce the costs of CO2 capture.
”With this method, we can remove more CO2 and obtain a cleaner product for smaller plants. Thus, it becomes less expensive,” Hägg says.
”We also have membranes today that are used to separate CO2 and have been used for a couple of decades, but these membranes are used for natural gases at high pressures, and are not suited for CO2 from flue gas. If the membrane separated poorly, very large amounts of the material is needed, and that makes this separation expensive,“ Professor Hägg explains.
Membranes have a major potential to become an inexpensive and eco-friendly alternative in the future. An international patent has been taken out for the new type. Manufacturers both in Europe and the USA have taken an interest in putting it into production, the professor reveals.
Testing in Europe
The Membrane Research Group (Memfo) recently joined a consortium of 26 European businesses and institutions within a project named NanoGloWa – Nanostructured Membranes against Global Warming. The consortium has received EUR 13 million to develop such membranes. One of these millions is reserved for Memfo.
According to Hägg, the new technology ought to be very interesting for coal-powered plants. “Within a five-year period, the plan is to test the membrane technology in four large power plants in Europe. We believe this will result in an international breakthrough for energy-efficient CO2 membranes,” she says.
When it comes to gas-powered plants, the concentration of CO2 is so low that the pressure in the waste gas must be increased before the gas can be cleaned with this method. However, Professor Hägg reveals that Statoil is currently developing a method for pressurized exhaust that could be combined with this membrane technology, and that would make it interesting for purification in gas-powered plants as well.
Besides CO2 purification in energy production, the method could be used for more or less any type of purification where carbon dioxide is removed from other gases.
”For instance, we are testing this method to purify CO2 from laughing gas in hospitals, and the results are promising,” concludes Professor May-Britt Hägg.
References:
AlphaGalileo: New membrane catches CO2 - September 19, 2007.
Norwegian University of Science and Technology: Membrane Research Group (Memfo), overview of research [*.pdf].
Biopact: Plastic membrane to bring down cost of carbon capture - August 15, 2007
Biopact: Pre-combustion CO2 capture from biogas - the way forward? - March 31, 2007
Article continues
Wednesday, September 19, 2007
Researchers explore why conservation efforts fail: lack of anthropological insight main cause
In this week's special issue of the Proceedings of the National Academy of Sciences, Indiana University political scientist Elinor Ostrom and colleagues wonder why exactly so many conservation projects fail. Ostrom edited the special issue with Arizona State University's Macro Janssen and John Anderies.
Part of their answer is that while many basic conservation strategies and concepts are sound in theory, their practical use is often seriously flawed. The strategies and policies are designed in academia and then applied too generally, in a 'top-down' and often eurocentric manner, as an inflexible, regulatory 'blueprint' that foolishly ignores local culture, economics, social behavior and politics.
Conservationists need help from anthropologists and ethnographers, they urge. These social scientists carefully analyse and learn to understand the complexities of how other cultures interact with nature and its resources. Environmental anthropologists take a broad, but very empirical and detailed perspective: through participant observation and other dedicated fieldwork techniques they learn the language of the communities they work with and they succeed in placing their social behavior in that often impenetrable whole called 'culture'. The ethnographer's sharp eye reveals practises that are highly meaningful to local communities, but that remain invisible to outsiders, including the conservationist.
In her contribution, Ostrom therefor proposes a flexible 'framework' for determining what factors will influence natural resource management. The interdisciplinary framework highlights the need for ethnographic analysis and anthropological understanding. What conservationists must learn is that they shouldn't ignore what's going on at the local level, Ostrom says. It is highly beneficial to work with local people, including the resource exploiters (often seen as 'the enemy'), to create effective regulation, she adds. Top-down approaches are doomed to fail.
Modern conservation theory relies on well established mathematical models that predict what will happen to a species, a resource or a habitat over time. But one thing these abstract models can't account for is the unpredictable behavior of human beings whose lives both influence and are influenced by conservation efforts. Without understanding local cultures and their complex symbolic and social fabric, conservation can never take root in the community in such a way that its members take the effort to heart, understand its rationale and act on it:
Ostrom's framework is divided into tiers that allow conservationists and policymakers to delineate those factors most likely to affect the protection or management of a given resource.
The first tier imposes four broad variables: the resource system, the resource units, the governance system and the resource users. The second tier examines each of these variables in greater detail, such as the government and non-government entities that may already be regulating the resource, the innate productivity of a resource system, the size and placement of the system, the system's economic value and what sorts of people use the resource -- from indigenous people to heads of state. The third tier digs even deeper into each of the basic variables.
Applying Ostrom's framework, policymakers are encouraged first to examine the behaviors of resource users, then establish incentives for resource users to aid a conservation strategy or, at least, not interfere with it. In short, anthropologists and ethnographers must be hired first to lay the ground-work and describe the local human context, before any further steps can be taken.
Ostrom's framework could also serve to normalize the effects of political upheavals that occur regularly at both national and state/provincial levels. It also accommodates non-political changes that may come with economic development and environmental change. In short, the framework's flexibility would allow the resource managers to modify a plan without scrapping the plan entirely.
Ostrom is the co-director of the Workshop in Political Theory and Policy Analysis at IU Bloomington. She and special issue co-editors Janssen and Anderies are also affiliated with the Arizona State University School of Human Evolution and Social Change. Ostrom's research was supported by grants from the National Science Foundation, the Ford Foundation and the MacArthur Foundation.
Biopact strongly agrees with Ostrom's analysis, but quite frankly, we think the author states the obvious. Biopact was originally founded by a group of social & cultural anthropologists precisely out of frustration over the current state of affairs: countless communities in the developing world have to deal with a permanent stream of top-down decision makers - from Worldbankers, bureaucrats, NGOs, conservationists, economists, and international aid organisations - who all enter their world to dictate how they should organise their lives and deal with the environment. After their 24-hour stay (if that), they leave and go back to their headquarters in Paris, London or New York, thinking they have achieved something. When the project fails because of 'unexpected behavior' of the local community, the anthropologist simply points to the power of culture.
We should not exaggerate the matter, because many organisations and projects have already understood the value of 'local knowledge' and of actively engaging local communities in decision-making processes and in policy design, but still, this often remains a paper exercise. It is amazing to see that in the 21st century, countless analysts, policy makers and researchers still talk and think about other people in a purely academic context without even knowing the communities in question, let alone the complexities of their culture and life-world. What is more, even so-called 'stakeholder participation' efforts are often naive, because they follow routines developed in academia. Only a prior and in-depth anthropological approach can overcome the pitfalls of such consultation rounds.
Applying abstract mathematical models to reorganise cultures' approach to the environment, to politics and the economy, is profoundly naive if these models are not informed by thorough analyses of the reality on the ground. Communities of people are not merely an empty 'factor' the effects of which can be 'computed' and predicted. Precisely in order to get a grip on the dense, idiosyncratic practises of other cultures, the science of social and cultural anthropology has developed successful methods, techniques and analytical frameworks with which to document, translate and understand life-worlds and human behavior in all its dimensions. There is no reason as to why conservationists should not hire these researchers and fieldworkers.
Ethnographic fieldwork must be carried out by trained professionals and can be resource intensive and time consuming. But the knowledge gained from it is invaluable and reduces the risk of failure for conservation efforts. Anthropological insight allows for the adaptation of interventions and projects to a very specific context whose dynamics are largely determined by culture.
Picture: Anthropologist Shauna LaTosky with Mursi-kids in Southern Ethiopia. Ethnographic field work is time consuming but yields invaluable insights into local culture. Without this knowledge, conservation efforts have a higher risk of failing. Credit: University of Mainz.
References:
Ostrom, E. "A diagnostic approach for going beyond panaceas", Proc. Natl. Acad. Sci., Published online before print September 19, 2007, DOI: 10.1073/pnas.0702288104
Eurekalert: Why conservation efforts often fail - September 18, 2007.
Biopact: A closer look at Social Impact Assessments of large biofuel projects - April 04, 2007
Article continues
posted by Biopact team at 10:29 PM 1 comments links to this post