<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    According to Wetlands International, an NGO, the Kyoto Protocol as it currently stands does not take into account possible emissions from palm oil grown on a particular type of land found in Indonesia and Malaysia, namely peatlands. Mongabay - December 5, 2007.

    Malaysia's oil & gas giant Petronas considers entering the biofuels sector. Zamri Jusoh, senior manager of Petronas' petroleum development management unit told reporters "of course our focus is on oil and gas, but I think as we move into the future we cannot ignore the importance of biofuels." AFP - December 5, 2007.

    In just four months, the use of biodiesel in the transport sector has substantially improved air quality in Metro Manila, data from the Philippines Department of Environment and Natural Resources (DENR) showed. A blend of one percent coco-biodiesel is mandated by the Biofuels Act of 2007 which took effect last May. By 2009, it would be increased to two percent. Philippine Star - December 4, 2007.

    Kazakhstan will next year adopt laws to regulate its fledgling biofuel industry and plans to construct at least two more plants in the next 18 months to produce environmentally friendly fuel from crops, industry officials said. According to Akylbek Kurishbayev, vice-minister for agriculture, he Central Asian country has the potential to produce 300,000 tons a year of biodiesel and export half. Kazakhstan could also produce up to 1 billion liters of bioethanol, he said. "The potential is huge. If we use this potential wisely, we can become one of the world's top five producers of biofuels," Beisen Donenov, executive director of the Kazakhstan Biofuels Association, said on the sidelines of a grains forum. Reuters - November 30, 2007.

    SRI Consulting released a report on chemicals from biomass. The analysis highlights six major contributing sources of green and renewable chemicals: increasing production of biofuels will yield increasing amounts of biofuels by-products; partial decomposition of certain biomass fractions can yield organic chemicals or feedstocks for the manufacture of various chemicals; forestry has been and will continue to be a source of pine chemicals; evolving fermentation technology and new substrates will also produce an increasing number of chemicals. Chemical Online - November 27, 2007.

    German industrial conglomerate MAN AG plans to expand into renewable energies such as biofuels and solar power. Chief Executive Hakan Samuelsson said services unit Ferrostaal would lead the expansion. Reuters - November 24, 2007.

    Analysts think Vancouver-based Ballard Power Systems, which pumped hundreds of millions and decades of research into developing hydrogen fuel cells for cars, is going to sell its automotive division. Experts describe the development as "the death of the hydrogen highway". The problems with H2 fuel cell cars are manifold: hydrogen is a mere energy carrier and its production requires a primary energy input; production is expensive, as would be storage and distribution; finally, scaling fuel cells and storage tanks down to fit in cars remains a huge challenge. Meanwhile, critics have said that the primary energy for hydrogen can better be used for electricity and electric vehicles. On a well-to-wheel basis, the cleanest and most efficient way to produce hydrogen is via biomass, so the news is a set-back for the biohydrogen community. But then again, biomass can be used more efficiently as electricity for battery cars. Canada.com - November 21, 2007.

    South Korea plans to invest 20 billion won (€14.8/$21.8 million) by 2010 on securing technologies to develop synthetic fuels from biomass, coal and natural gas, as well as biobutanol. 29 private companies, research institutes and universities will join this first stage of the "next-generation clean energy development project" led by South Korea's Ministry of Commerce, Industry and Energy. Korea Times - November 19, 2007.

    OPEC leaders began a summit today with Venezuelan President Hugo Chavez issuing a chilling warning that crude prices could double to US$200 from their already-record level if the United States attacked Iran or Venezuela. He urged assembled leaders from the OPEC, meeting for only the third time in the cartel's 47-year history, to club together for geopolitical reasons. But the cartel is split between an 'anti-US' block including Venezuela, Iran, and soon to return ex-member Ecuador, and a 'neutral' group comprising most Gulf States. France24 - November 17, 2007.

    The article "Biofuels: What a Biopact between North and South could achieve" published in the scientific journal Energy Policy (Volume 35, Issue 7, 1 July 2007, Pages 3550-3570) ranks number 1 in the 'Top 25 hottest articles'. The article was written by professor John A. Mathews, Macquarie University (Sydney, Autralia), and presents a case for a win-win bioenergy relationship between the industrialised and the developing world. Mathews holds the Chair of Strategic Management at the university, and is a leading expert in the analysis of the evolution and emergence of disruptive technologies and their global strategic management. ScienceDirect - November 16, 2007.

    Timber products company China Grand Forestry Resources Group announced that it would acquire Yunnan Shenyu New Energy, a biofuels research group, for €560/$822 million. Yunnan Shenyu New Energy has developed an entire industrial biofuel production chain, from a fully active energy crop seedling nursery to a biorefinery. Cleantech - November 16, 2007.

    Northern European countries launch the Nordic Bioenergy Project - "Opportunities and consequences of an expanding bio energy market in the Nordic countries" - with the aim to help coordinate bioenergy activities in the Nordic countries and improve the visibility of existing and future Nordic solutions in the complex field of bioenergy, energy security, competing uses of resources and land, regional development and environmental impacts. A wealth of data, analyses and cases will be presented on a new website - Nordic Energy - along with announcements of workshops during the duration of project. Nordic Energy - November 14, 2007.

    Global Partners has announced that it is planning to increase its refined products and biofuels storage capacity in Providence, Rhode Island by 474,000 barrels. The partnership has entered into agreements with New England Petroleum Terminal, at a deepwater marine terminal located at the Port of Providence. PRInside - November 14, 2007.

    The Intergovernmental Panel on Climate Change (IPCC) kicks off the meeting in Valencia, Spain, which will result in the production of the Synthesis Report on climate change. The report will summarize the core findings of the three volumes published earlier by the separate working groups. IPCC - November 12, 2007.

    Biopact's Laurens Rademakers is interviewed by Mongabay on the risks of large-scale bioenergy with carbon storage (BECS) proposals. Even though Biopact remains positive about BECS, because it offers one of the few safe systems to mitigate climate change in a drastic way, care must be take to avoid negative impacts on tropical forests. Mongabay - November 10, 2007.

    According to the latest annual ranking produced by The Scientist, Belgium is the world's best country for academic research, followed by the U.S. and Canada. Belgium's top position is especially relevant for plant, biology, biotechnology and bioenergy research, as these are amongst the science fields on which it scores best. The Scientist - November 8, 2007.

    Mascoma Corporation, a cellulosic ethanol company, today announced the acquisition of Celsys BioFuels, Inc. Celsys BioFuels was formed in 2006 to commercialize cellulosic ethanol production technology developed in the Laboratory of Renewable Resources Engineering at Purdue University. The Celsys technology is based on proprietary pretreatment processes for multiple biomass feedstocks, including corn fiber and distiller grains. The technology was developed by Dr. Michael Ladisch, an internationally known leader in the field of renewable fuels and cellulosic biofuels. He will be taking a two-year leave of absence from Purdue University to join Mascoma as the company’s Chief Technology Officer. Business Wire - November 7, 2007.

    Bemis Company, Inc. announced today that it will partner with Plantic Technologies Limited, an Australian company specializing in starch-based biopolymers, to develop and sell renewably resourced flexible films using patented Plantic technology. Bemis - November 7, 2007.

    Hungary's Kalocsa Hõerõmû Kft is to build a HUF 40 billion (€158.2 million) straw-fired biomass power plant with a maximum capacity of 49.9 megawatts near Kalocsa in southern Hungary. Portfolio Hungary - November 7, 2007.

    Canada's Gemini Corporation has received approval to proceed into the detailed engineering, fabrication and construction phases of a biogas cogeneration facility located in the Lethbridge, Alberta area, the first of its kind whereby biogas production is enhanced through the use of Thermal Hydrolysis technology, a high temperature, high pressure process for the safe destruction of SRM material from the beef industry. The technology enables a facility to redirect waste material, previously shipped to landfills, into a valuable feedstock for the generation of electricity and thermal energy. This eliminates the release of methane into the environment and the resultant solids are approved for use as a land amendment rather than re-entering the waste stream. In addition, it enhances the biogas production process by more than 25%. Market Wire - November 7, 2007.

    A new Agency to manage Britain's commitment to biofuels was established today by Transport Secretary Ruth Kelly. The Renewable Fuels Agency will be responsible for the day to day running of the Renewable Transport Fuels Obligation, coming into force in April next year. By 2010, the Obligation will mean that 5% of all the fuels sold in the UK should come from biofuels, which could save 2.6m to 3m tonnes of carbon dioxide a year. eGov Monitor - November 5, 2007.

    Prices for prompt loading South African coal cargoes reached a new record last week with a trade at $85.00 a tonne free-on-board (FOB) for a February cargo. Strong Indian demand and tight supply has pushed South African prices up to record levels from around $47.00 at the beginning of the year. European DES/CIF ARA coal prices have remained fairly stable over the past few days, having traded up to a record $130.00 a tonne DES ARA late last week. Fair value is probably just below $130.00 a tonne, traders said. At this price, some forms of biomass become directly competitive with coal. Reuters Africa - November 4, 2007.

    The government of India's Harayana state has decided to promote biomass power projects based on gasification in a move to help rural communities replace costly diesel and furnace oil. The news was announced during a meeting of the Haryana Renewable Energy Development Agency (HAREDA). Six pilot plants have demonstrated the efficiency and practicability of small-scale biomass gasification. Capital subsidies will now be made available to similar projects at the rate of Rs 2.5 lakh (€4400) per 100 KW for electrical applications and Rs 2 lakh (€3500) per 300 KW for thermal applications. New Kerala - November 1, 2007.


Creative Commons License


Wednesday, December 05, 2007

US DOE to invest $7.7 million for four biomass-to-liquids projects; more than $1 billion for biofuels this year

U.S. Department of Energy (DOE) Secretary Samuel W. Bodman announced the selection of four biofuels projects in which the DOE plans to invest up to $7.7 million. These projects will demonstrate the thermochemical conversion process of turning grasses, stover, the non-edible portion of crops and other materials into biofuel. Combined with this new investment in biomass-to-liquids (BtL) technologies, just this calendar year alone, DOE has announced over $1 billion in funding for biofuels research and development (multi-year funding) projects.

The research is primarily aimed at improving techniques to efficiently eliminate contaminants generated during the thermochemical production of biofuels. Ultimately, the R&D projects will help further President Bush’s goal of making cellulosic ethanol cost-competitive with gasoline by 2012 and, along with increased automobile fuel efficiency, reduce America’s gasoline consumptions by 20 percent in ten years.

Combined with the industry cost share, more than $15.7 million is slated for investment in these four projects. Negotiations between the selected companies and DOE will begin immediately to determine final project plans and precise funding levels. Funding will begin in Fiscal Year 2008 and will run through FY 2010, subject to Congressional appropriations.

The biomass-to-liquids process consists of gasifying biomass to generate a carbon monoxide and hydrogen rich syngas, which is then liquefied via Fischer-Tropsch synthesis. The resulting fuels are ultra-clean 'synthetic' biofuels.

The following four projects were competitively selected for negotiation of awards:
  1. Emery Energy Company of Salt Lake City, Utah: Emery Energy Company has partnered with Ceramatec, Inc. and the Western Research Institute to demonstrate a new, low-cost, novel way to mitigate tars and oils in biomass synthesis gas while also managing other impurities. This project will also verify the technical viability of using the resulting clean synthesis gas in a downstream liquid fuel catalysis process. EEC intends to use a ‘high impact’ biomass such as corn stover as the high impact biomass for their project. DOE will provide up to $1.7 million for the $2.9 million project.
  2. Iowa State University of Ames, Iowa: Iowa State, in partnership with ConocoPhillips Company, will test an integrated biomass to liquids system that uses gas cooling through oil scrubbing rather than water scrubbing in order to minimize waste water treatment. Switchgrass will be the biomass feedstock fed into the gasifier. The gas-oil scrubbing liquid will then be sent to a coker in existing petroleum refining operations to be used as a feedstock. ConocoPhillips’ proprietary sulfur removal technology will also be incorporated into the gas cleanup. Non-proprietary methods will be used to remove ammonia, chloride and other alkali materials. DOE will provide up to $2 million for the $5.2 million project.
  3. Research Triangle Institute of Research Triangle Park, North Carolina: Research Triangle Institute, in partnership with North Carolina State University and the University of Utah, will generate syngas derived from woody biomass. A dual fluidized bed reactor will allow continuous regeneration of a catalyst that can simultaneously reform, crack, and remove tar, NH3 and H2S down to ppm levels. During Phase 2, RTI will design and build a slurry bubble column reactor system to convert the clean syngas into a liquid transportation fuel. DOE will provide up to $2 million for the $3.1 million project.
  4. Southern Research Institute of Birmingham, Alabama: In collaboration with Pall Corporation, Thermochem Recovery International, and Rentech, Southern Research Institute will use a 1 megawatt thermal biomass gasifier to generate syngas. The proposed ceramic filter technology and proven gas cleanup sorbent and catalyst system is expected to exceed the required contaminant removal levels specified by Rentech. The unique cleanup technology will be coupled with a conventional scrubber and polishing filter downstream. DOE will provide up to $2 million for the $4.5 million project.
Cellulosic ethanol is a clean, renewable fuel made from a wide variety of non-food plant materials (or feedstocks), including agricultural wastes such as corn stover and cereal straws, industrial plant waste like saw dust and paper pulp, and energy crops grown specifically for fuel production like switchgrass:
:: :: :: :: :: :: :: :: :: ::

By using a variety of regional feedstocks for refining cellulosic ethanol, the fuel can be produced in nearly every region of the country. Though it requires a more complex refining process, cellulosic ethanol requires less fossil fuels for production and results in lower greenhouse emissions than traditional corn-based ethanol. E-85, an ethanol-fuel blend that is 85-percent ethanol, is already available in more than 1,200 fueling stations nationwide and can power millions of flexible fuel vehicles already on the road.
We are committed to expanding the sustainable production and use of biofuels and these projects will help develop cleaner methods for turning a wide variety of feedstocks into fuel. Successful completion of these projects stands to redefine the way we produce America’s fuels and follows the President’s call to end our dependence to oil. - Samuel Bodman, US Secretary of Energy
As part of DOE’s effort to meet the goal of reducing U.S. gasoline consumption by 20 percent in ten years, other biofuels research and development projects announced this year include: $385 million for commercial-scale biorefineries (6 projects being pursued); $200 million for pilot-scale (10%) biorefineries to test novel refining processes; over $400 million for three bioenergy centers - funding originally include $375 million, but an early surge of funds allowed for an additional $30+ million; and $23 million for “ethanologen” to develop more efficient microbes for ethanol refining.

References:
US DOE: Department of Energy to Invest up to $7.7 Million for Four Biofuels Projects
DOE Announces over $1 Billion in Biofuels R&D Projects this Year
- December 4, 2007.



0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home