<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    Kazakhstan will next year adopt laws to regulate its fledgling biofuel industry and plans to construct at least two more plants in the next 18 months to produce environmentally friendly fuel from crops, industry officials said. According to Akylbek Kurishbayev, vice-minister for agriculture, he Central Asian country has the potential to produce 300,000 tons a year of biodiesel and export half. Kazakhstan could also produce up to 1 billion liters of bioethanol, he said. "The potential is huge. If we use this potential wisely, we can become one of the world's top five producers of biofuels," Beisen Donenov, executive director of the Kazakhstan Biofuels Association, said on the sidelines of a grains forum. Reuters - November 30, 2007.

    SRI Consulting released a report on chemicals from biomass. The analysis highlights six major contributing sources of green and renewable chemicals: increasing production of biofuels will yield increasing amounts of biofuels by-products; partial decomposition of certain biomass fractions can yield organic chemicals or feedstocks for the manufacture of various chemicals; forestry has been and will continue to be a source of pine chemicals; evolving fermentation technology and new substrates will also produce an increasing number of chemicals. Chemical Online - November 27, 2007.

    German industrial conglomerate MAN AG plans to expand into renewable energies such as biofuels and solar power. Chief Executive Hakan Samuelsson said services unit Ferrostaal would lead the expansion. Reuters - November 24, 2007.

    Analysts think Vancouver-based Ballard Power Systems, which pumped hundreds of millions and decades of research into developing hydrogen fuel cells for cars, is going to sell its automotive division. Experts describe the development as "the death of the hydrogen highway". The problems with H2 fuel cell cars are manifold: hydrogen is a mere energy carrier and its production requires a primary energy input; production is expensive, as would be storage and distribution; finally, scaling fuel cells and storage tanks down to fit in cars remains a huge challenge. Meanwhile, critics have said that the primary energy for hydrogen can better be used for electricity and electric vehicles. On a well-to-wheel basis, the cleanest and most efficient way to produce hydrogen is via biomass, so the news is a set-back for the biohydrogen community. But then again, biomass can be used more efficiently as electricity for battery cars. Canada.com - November 21, 2007.

    South Korea plans to invest 20 billion won (€14.8/$21.8 million) by 2010 on securing technologies to develop synthetic fuels from biomass, coal and natural gas, as well as biobutanol. 29 private companies, research institutes and universities will join this first stage of the "next-generation clean energy development project" led by South Korea's Ministry of Commerce, Industry and Energy. Korea Times - November 19, 2007.

    OPEC leaders began a summit today with Venezuelan President Hugo Chavez issuing a chilling warning that crude prices could double to US$200 from their already-record level if the United States attacked Iran or Venezuela. He urged assembled leaders from the OPEC, meeting for only the third time in the cartel's 47-year history, to club together for geopolitical reasons. But the cartel is split between an 'anti-US' block including Venezuela, Iran, and soon to return ex-member Ecuador, and a 'neutral' group comprising most Gulf States. France24 - November 17, 2007.

    The article "Biofuels: What a Biopact between North and South could achieve" published in the scientific journal Energy Policy (Volume 35, Issue 7, 1 July 2007, Pages 3550-3570) ranks number 1 in the 'Top 25 hottest articles'. The article was written by professor John A. Mathews, Macquarie University (Sydney, Autralia), and presents a case for a win-win bioenergy relationship between the industrialised and the developing world. Mathews holds the Chair of Strategic Management at the university, and is a leading expert in the analysis of the evolution and emergence of disruptive technologies and their global strategic management. ScienceDirect - November 16, 2007.

    Timber products company China Grand Forestry Resources Group announced that it would acquire Yunnan Shenyu New Energy, a biofuels research group, for €560/$822 million. Yunnan Shenyu New Energy has developed an entire industrial biofuel production chain, from a fully active energy crop seedling nursery to a biorefinery. Cleantech - November 16, 2007.

    Northern European countries launch the Nordic Bioenergy Project - "Opportunities and consequences of an expanding bio energy market in the Nordic countries" - with the aim to help coordinate bioenergy activities in the Nordic countries and improve the visibility of existing and future Nordic solutions in the complex field of bioenergy, energy security, competing uses of resources and land, regional development and environmental impacts. A wealth of data, analyses and cases will be presented on a new website - Nordic Energy - along with announcements of workshops during the duration of project. Nordic Energy - November 14, 2007.

    Global Partners has announced that it is planning to increase its refined products and biofuels storage capacity in Providence, Rhode Island by 474,000 barrels. The partnership has entered into agreements with New England Petroleum Terminal, at a deepwater marine terminal located at the Port of Providence. PRInside - November 14, 2007.

    The Intergovernmental Panel on Climate Change (IPCC) kicks off the meeting in Valencia, Spain, which will result in the production of the Synthesis Report on climate change. The report will summarize the core findings of the three volumes published earlier by the separate working groups. IPCC - November 12, 2007.

    Biopact's Laurens Rademakers is interviewed by Mongabay on the risks of large-scale bioenergy with carbon storage (BECS) proposals. Even though Biopact remains positive about BECS, because it offers one of the few safe systems to mitigate climate change in a drastic way, care must be take to avoid negative impacts on tropical forests. Mongabay - November 10, 2007.

    According to the latest annual ranking produced by The Scientist, Belgium is the world's best country for academic research, followed by the U.S. and Canada. Belgium's top position is especially relevant for plant, biology, biotechnology and bioenergy research, as these are amongst the science fields on which it scores best. The Scientist - November 8, 2007.

    Mascoma Corporation, a cellulosic ethanol company, today announced the acquisition of Celsys BioFuels, Inc. Celsys BioFuels was formed in 2006 to commercialize cellulosic ethanol production technology developed in the Laboratory of Renewable Resources Engineering at Purdue University. The Celsys technology is based on proprietary pretreatment processes for multiple biomass feedstocks, including corn fiber and distiller grains. The technology was developed by Dr. Michael Ladisch, an internationally known leader in the field of renewable fuels and cellulosic biofuels. He will be taking a two-year leave of absence from Purdue University to join Mascoma as the company’s Chief Technology Officer. Business Wire - November 7, 2007.

    Bemis Company, Inc. announced today that it will partner with Plantic Technologies Limited, an Australian company specializing in starch-based biopolymers, to develop and sell renewably resourced flexible films using patented Plantic technology. Bemis - November 7, 2007.

    Hungary's Kalocsa Hõerõmû Kft is to build a HUF 40 billion (€158.2 million) straw-fired biomass power plant with a maximum capacity of 49.9 megawatts near Kalocsa in southern Hungary. Portfolio Hungary - November 7, 2007.

    Canada's Gemini Corporation has received approval to proceed into the detailed engineering, fabrication and construction phases of a biogas cogeneration facility located in the Lethbridge, Alberta area, the first of its kind whereby biogas production is enhanced through the use of Thermal Hydrolysis technology, a high temperature, high pressure process for the safe destruction of SRM material from the beef industry. The technology enables a facility to redirect waste material, previously shipped to landfills, into a valuable feedstock for the generation of electricity and thermal energy. This eliminates the release of methane into the environment and the resultant solids are approved for use as a land amendment rather than re-entering the waste stream. In addition, it enhances the biogas production process by more than 25%. Market Wire - November 7, 2007.

    A new Agency to manage Britain's commitment to biofuels was established today by Transport Secretary Ruth Kelly. The Renewable Fuels Agency will be responsible for the day to day running of the Renewable Transport Fuels Obligation, coming into force in April next year. By 2010, the Obligation will mean that 5% of all the fuels sold in the UK should come from biofuels, which could save 2.6m to 3m tonnes of carbon dioxide a year. eGov Monitor - November 5, 2007.

    Prices for prompt loading South African coal cargoes reached a new record last week with a trade at $85.00 a tonne free-on-board (FOB) for a February cargo. Strong Indian demand and tight supply has pushed South African prices up to record levels from around $47.00 at the beginning of the year. European DES/CIF ARA coal prices have remained fairly stable over the past few days, having traded up to a record $130.00 a tonne DES ARA late last week. Fair value is probably just below $130.00 a tonne, traders said. At this price, some forms of biomass become directly competitive with coal. Reuters Africa - November 4, 2007.

    The government of India's Harayana state has decided to promote biomass power projects based on gasification in a move to help rural communities replace costly diesel and furnace oil. The news was announced during a meeting of the Haryana Renewable Energy Development Agency (HAREDA). Six pilot plants have demonstrated the efficiency and practicability of small-scale biomass gasification. Capital subsidies will now be made available to similar projects at the rate of Rs 2.5 lakh (€4400) per 100 KW for electrical applications and Rs 2 lakh (€3500) per 300 KW for thermal applications. New Kerala - November 1, 2007.


Creative Commons License


Monday, December 03, 2007

Tallgrass Prairie Center to study polyculture prairie hay for bio-electricity: combining conservation and restoration with bioenergy

The University of Northern Iowa's Tallgrass Prairie Center is conducting a five-year project to research how prairie hay can be used to generate electricity, partnering with Cedar Falls Utilities, Soil Tilth Lab at Iowa State University and the Black Hawk County Conservation Board. In July, the Iowa Legislature awarded the Tallgrass Prairie Center $330,000 to conduct research on the feasibility of utilizing prairie hay for electrical generation. The study will look at ways to integrate conservation and restoration of grasslands with bioenergy production.

Michele Suhrer and Cassy Bohnet who are working on the project, say they will plant four different mixtures of prairie species on 100 acres of land rented from the Black Hawk County Conservation Board. The research will determine which mixtures produce the most energy efficient and sustainable prairie hay. Suhrer says the prairie hay can be grown on marginal land, possibly saving Conservation Reserve Program (CRP) land from being turned back into row crop production.

Dave Williams, project manager at the Center, says that by planting a diverse mix of tall perennial prairie grasses around row crops, soil erosion, runoff of pesticides and fertilizers can be reduced. Wildlife habitats can be restored or improved along with delivering other environmental benefits.

Last year, the bioenergy community was given a boost by the results of a study in Science on polycultures of multiple grass, wildflower and prairie species. The researchers, led by David Tilman, found that such plantations of mixed native energy crops can be carbon-negative, restore biodiversity, can grow on degraded land, and provide substantially more biomass for biofuels than the most promising monocultures. A bioeconomy based on mixed prairie grasses can restore the beauty of a lost landscape and helps soak up the vast amounts of carbon dioxide emitted into the atmosphere since the Industrial Revolution.

Known as the 'Tilman study' on 'low-input high-diversity grassland bioenergy systems', the findings showed that the polycultures yielded not less than 238 per cent more useable biomass than a single crop of switchgrass (long seen as the leading energy crop in the U.S.). Biofuels derived from the colorful fields resulted in 51 per cent more energy per acre compared to corn, the most widely used biofuel crop. Inputs of energy, fertilizer and herbicides were much lower as well. And because the perennial species store atmospheric carbon deep in their roots, they become part of a carbon-negative energy system (previous post).

The Tallgrass Prairie Center's bioenergy project will draw on the results of this study to see whether they can be replicated:
:: :: :: :: :: :: :: :: :: ::

The various mixtures of perennial prairie species to be test planted by the Tallgrass Prairie Center will take about three years to mature, after which they are ready for harvesting. Then two years will be devoted to research optimal harvesting techniques, and to interpret agronomic data.

According to Suhrer and Bohnet, most farmers already have the basic haying equipment to harvest the biomass, so that will be the least problematic area of study. Comparing and analysing productivity of different grass mixtures and their combustion characteristics will require more intensive work.

Cedar Falls Utilities will test burn the prairie hay to analyse its suitability as a biomass feedstock for the production of green electricity.

The Tallgrass Prairie Center is a strong advocate of progressive, ecological approaches utilizing native vegetation to provide environmental, economic and aesthetic benefits for the public good. The center is in the vanguard of roadside vegetation management, native Source Identified seed development, and prairie advocacy.

The center primarily serves the Upper Midwest Tallgrass Prairie Region, but is a model for similar efforts nationally and internationally.

The TPC aims to develop research, techniques, education and Source Identified seed for restoration and preservation of prairie vegetation in rights-of-way and other lands. The center was stablished at the University of Northern Iowa in 1999 as the Native Roadside Vegetation Center.

The center has some major programs running: the Prairie Institute, the Integrated Roadside Vegetation Management Program and the Iowa Ecotype Project.

References:
University of Northern Iowa: Researching the use of prairie hay to generate electricity - November 28, 2007.

Biopact: Tallgrass Prairie Center to implement Tilman's mixed grass findings - September 02, 2007

Biopact: Carbon negative biofuels: from monocultures to polycultures - December 08, 2006

0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home