<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network

    PetroChina Co Ltd, the country's largest oil and gas producer, plans to invest 800 million yuan to build an ethanol plant in Nanchong, in the southwestern province of Sichuan, its parent China National Petroleum Corp said. The ethanol plant has a designed annual capacity of 100,000 tons. ABCMoneyNews - December 21, 2007.

    Mexico passed legislation to promote biofuels last week, offering unspecified support to farmers that grow crops for the production of any renewable fuel. Agriculture Minister Alberto Cardenas said Mexico could expand biodiesel faster than ethanol. More soon. Reuters - December 20, 2007.

    Oxford Catalysts has placed an order worth approximately €700,000 (US$1 million) with the German company Amtec for the purchase of two Spider16 high throughput screening reactors. The first will be used to speed up the development of catalysts for hydrodesulphurisation (HDS). The second will be used to further the development of catalysts for use in gas to liquid (GTL) and Fischer-Tropsch processes which can be applied to next generation biofuels. AlphaGalileo - December 18, 2007.

    According to the Instituto Brasileiro de Geografia e Estatística (IBGE), Brazil's production of sugarcane will increase from 514,1 million tonnes this season, to a record 561,8 million tonnes in the 2008/09 cyclus - an increase of 9.3%. New numbers are also out for the 2007 harvest in Brazil's main sugarcane growing region, the Central-South: a record 425 million tonnes compared to 372,7 million tonnes in 2006, or a 14% increase. The estimate was provided by Unica – the União da Indústria de Cana-de-Açúcar. Jornal Cana - December 16, 2007.

    The University of East Anglia and the UK Met Office's Hadley Centre have today released preliminary global temperature figures for 2007, which show the top 11 warmest years all occurring in the last 13 years. The provisional global figure for 2007 using data from January to November, currently places the year as the seventh warmest on records dating back to 1850. The announcement comes as the Secretary-General of the World Meteorological Organization (WMO), Michel Jarraud, speaks at the Conference of the Parties (COP) in Bali. Eurekalert - December 13, 2007.

    The Royal Society of Chemistry has announced it will launch a new journal in summer 2008, Energy & Environmental Science, which will distinctly address both energy and environmental issues. In recognition of the importance of research in this subject, and the need for knowledge transfer between scientists throughout the world, from launch the RSC will make issues of Energy & Environmental Science available free of charge to readers via its website, for the first 18 months of publication. This journal will highlight the important role that the chemical sciences have in solving the energy problems we are facing today. It will link all aspects of energy and the environment by publishing research relating to energy conversion and storage, alternative fuel technologies, and environmental science. AlphaGalileo - December 10, 2007.

    Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. Therefore, soot development needs to be tackled at the source. Laser Induced Incandescence is a technique that reveals exactly where soot is generated and can be used by project partners to develop cleaner diesel engines. Terry Meyer, an Iowa State University assistant professor of mechanical engineering, is using similar laser technology to develop advanced sensors capable of screening the combustion behavior and soot characteristics specifically of biofuels. Eurekalert - December 7, 2007.

    Lithuania's first dedicated biofuel terminal has started operating in Klaipeda port. At the end of November 2007, the stevedoring company Vakaru krova (VK) started activities to manage transshipments. The infrastructure of the biodiesel complex allows for storage of up to 4000 cubic meters of products. During the first year, the terminal plans to transship about 70.000 tonnes of methyl ether, after that the capacities of the terminal would be increased. Investments to the project totaled €2.3 million. Agrimarket - December 5, 2007.

    New Holland supports the use of B100 biodiesel in all equipment with New Holland-manufactured diesel engines, including electronic injection engines with common rail technology. Overall, nearly 80 percent of the tractor and equipment manufacturer's New Holland-branded products with diesel engines are now available to operate on B100 biodiesel. Tractor and equipment maker John Deere meanwhile clarified its position for customers that want to use biodiesel blends up to B20. Grainnet - December 5, 2007.

    According to Wetlands International, an NGO, the Kyoto Protocol as it currently stands does not take into account possible emissions from palm oil grown on a particular type of land found in Indonesia and Malaysia, namely peatlands. Mongabay - December 5, 2007.

    Malaysia's oil & gas giant Petronas considers entering the biofuels sector. Zamri Jusoh, senior manager of Petronas' petroleum development management unit told reporters "of course our focus is on oil and gas, but I think as we move into the future we cannot ignore the importance of biofuels." AFP - December 5, 2007.

    In just four months, the use of biodiesel in the transport sector has substantially improved air quality in Metro Manila, data from the Philippines Department of Environment and Natural Resources (DENR) showed. A blend of one percent coco-biodiesel is mandated by the Biofuels Act of 2007 which took effect last May. By 2009, it would be increased to two percent. Philippine Star - December 4, 2007.

    Kazakhstan will next year adopt laws to regulate its fledgling biofuel industry and plans to construct at least two more plants in the next 18 months to produce environmentally friendly fuel from crops, industry officials said. According to Akylbek Kurishbayev, vice-minister for agriculture, he Central Asian country has the potential to produce 300,000 tons a year of biodiesel and export half. Kazakhstan could also produce up to 1 billion liters of bioethanol, he said. "The potential is huge. If we use this potential wisely, we can become one of the world's top five producers of biofuels," Beisen Donenov, executive director of the Kazakhstan Biofuels Association, said on the sidelines of a grains forum. Reuters - November 30, 2007.

    SRI Consulting released a report on chemicals from biomass. The analysis highlights six major contributing sources of green and renewable chemicals: increasing production of biofuels will yield increasing amounts of biofuels by-products; partial decomposition of certain biomass fractions can yield organic chemicals or feedstocks for the manufacture of various chemicals; forestry has been and will continue to be a source of pine chemicals; evolving fermentation technology and new substrates will also produce an increasing number of chemicals. Chemical Online - November 27, 2007.

    German industrial conglomerate MAN AG plans to expand into renewable energies such as biofuels and solar power. Chief Executive Hakan Samuelsson said services unit Ferrostaal would lead the expansion. Reuters - November 24, 2007.

    Analysts think Vancouver-based Ballard Power Systems, which pumped hundreds of millions and decades of research into developing hydrogen fuel cells for cars, is going to sell its automotive division. Experts describe the development as "the death of the hydrogen highway". The problems with H2 fuel cell cars are manifold: hydrogen is a mere energy carrier and its production requires a primary energy input; production is expensive, as would be storage and distribution; finally, scaling fuel cells and storage tanks down to fit in cars remains a huge challenge. Meanwhile, critics have said that the primary energy for hydrogen can better be used for electricity and electric vehicles. On a well-to-wheel basis, the cleanest and most efficient way to produce hydrogen is via biomass, so the news is a set-back for the biohydrogen community. But then again, biomass can be used more efficiently as electricity for battery cars. Canada.com - November 21, 2007.

    South Korea plans to invest 20 billion won (€14.8/$21.8 million) by 2010 on securing technologies to develop synthetic fuels from biomass, coal and natural gas, as well as biobutanol. 29 private companies, research institutes and universities will join this first stage of the "next-generation clean energy development project" led by South Korea's Ministry of Commerce, Industry and Energy. Korea Times - November 19, 2007.

    OPEC leaders began a summit today with Venezuelan President Hugo Chavez issuing a chilling warning that crude prices could double to US$200 from their already-record level if the United States attacked Iran or Venezuela. He urged assembled leaders from the OPEC, meeting for only the third time in the cartel's 47-year history, to club together for geopolitical reasons. But the cartel is split between an 'anti-US' block including Venezuela, Iran, and soon to return ex-member Ecuador, and a 'neutral' group comprising most Gulf States. France24 - November 17, 2007.

    The article "Biofuels: What a Biopact between North and South could achieve" published in the scientific journal Energy Policy (Volume 35, Issue 7, 1 July 2007, Pages 3550-3570) ranks number 1 in the 'Top 25 hottest articles'. The article was written by professor John A. Mathews, Macquarie University (Sydney, Autralia), and presents a case for a win-win bioenergy relationship between the industrialised and the developing world. Mathews holds the Chair of Strategic Management at the university, and is a leading expert in the analysis of the evolution and emergence of disruptive technologies and their global strategic management. ScienceDirect - November 16, 2007.

Creative Commons License

Friday, December 21, 2007

NCSU researchers develop 'self-processing' sweet potato for efficient ethanol production

Sweet potatoes are being re-engineered by North Carolina State University (NCSU) scientists as source of ethanol and bioplastics to help the U.S. bioproducts industry’s reliance on corn. The researchers' goal is to embed enzymes straight into the starch-rich tuber, so that it grows its own bioconversion enzymes and processes itself into biofuels. This would be yet another example of 'third generation' energy crops, which are being developed by several biotech firms and science teams (pevious post, here and here).

The industrial sweet potato can produce twice the starch content of corn – the leading source of ethanol in the U.S. Using plants from China, Africa, and South America, the NCSU scientists have created hybrids with starch contents over 50 percent higher than the sweet potatoes most Americans eat. These industrial sweet potatoes are capable of producing 'tremendous amounts of biomass', mostly starch-based. More starch means more sugars that can be fermented into ethanol.

Dr. Craig Yencho, an NC State associate professor of Horticultural Science, who is leading a project to develop alternative uses for the vegetable says the industrial sweet potato is edible, but not palatable. While the table version is orange inside and becomes sweet during baking as enzymes break down starch into sugar, the industrial sweet potato typically has a purple or white skin and white inside with a much higher starch content that limits its sweet taste.

North Carolina produces about 40 percent of the U.S. sweet potato crop. The industrial sweet potato could help diversify the state’s farm income. NCSU has several Potato and Sweetpotato Breeding and Genetics Programs running to research the use of the crop for the production of energy and bioproducts.

The biggest challenge is lowering production costs to take advantage of that higher starch content. Sweet potatoes traditionally are planted by hand using transplants, a process that costs up to 10 times as much as planting corn. But if a technique is developed to plant them the same way Irish potatoes are planted – by planting cut 'seed' pieces and mechanically planting them into the ground - planting costs could be cut in half.

In that case, ethanol production from sweet potatoes then becomes much more cost effective and feasible. Not only would these sweet potatoes be a much more viable ethanol source than corn, but because they are industrial sweet potatoes, farmers wouldn’t be taking away from a food source, says Yencho, who is currently in China helping the world’s number one producer of sweet potatoes tap the crop’s biofuel potential.

'Self-processing' crop
While the best of conventional breeding techniques have been used to develop NC State’s industrial sweet potato, Yencho is also teaming with colleague Bryon Sosinski, an associate professor of horticulture and the director of the Genome Research Lab, on an unconventional approach to further boost sugar – and thus ethanol – yield. Sosinski is trying to insert genes from bacteria that live in the hot waters around thermal vents on the ocean floor into sweet potato plants. The genes are active only at high temperatures, producing enzymes that break starch chains apart into much smaller sugars.

The goal is to produce what Yencho calls a 'self-processing' sweet potato that doesn’t need additives to be prepared for fermentation. The harvested roots could be thrown into a vat, and when the heat is turned up, the internal enzymes would digest the starch to a point where the resulting sugars could be fermented into fuel. Sosinski is now growing genetically modified sweet potato seedlings in the lab, and he hopes to move into greenhouse trials next year and into field plantings within three years:
:: :: :: :: :: :: :: :: :: :: :: ::

The special genes used to grow the self-processing tuber would reduce the cost of enzymes that are used by biofuel processors to break down the starch in corn to sugars which are then converted into alcohol by fermentation.

Ultimately, NC State scientists believe the industrial sweet potato can compete with corn – now much cheaper to produce – as a viable alternative source of ethanol. Corn is by far the leading source of ethanol, but corn-based biofuel has come under increasing attack by poverty-fighting and other groups who argue, among other things, that diversion of corn crops for biofuels aggravates world-hunger problems. At the same time, Congress and state legislative leaders concerned about dependence on imported oil are pushing for increased use of biofuels. The new Energy Bill has given the corn ethanol industry a major boost.
There isn’t one magical crop that will solve our energy problems, but the industrial sweet potato can play an important role, especially in the southeastern U.S. where the crop is grown. - Dr. Craig Yencho, NC State associate professor of Horticultural Science
Research into the sweet potato for biofuels has added advantages: it can further enhance its value as a nutritional food staple while simultaneously finding new ways the crop can help replace petroleum as source for industrial products ranging from plastics to natural colorants and high-value specialty chemicals.

And in their zeal to mine the tuber’s variability, Yencho and his team of NC State researchers have created a hybrid intended for neither food nor fuel – the non-bearing “Sweet Caroline” variety developed strictly for ornamental use.

North Carolina State University News: NC State University Researchers Brewing Energy From Sweet Potatoes - November 30, 2007.

NCSU: Brewing Energy from Natural Resources [*.pdf].

North Carolina State University Potato and Sweetpotato Breeding and Genetics Website.

Biopact: Third generation biofuels: scientists patent corn variety with embedded cellulase enzymes - May 05, 2007

Biopact: Syngenta to trial third generation biofuel crop that grows its own bioconversion enzyme - November 12, 2007

Biopact: Agrivida and Codon Devices to partner on third-generation biofuels - August 03, 2007


Post a Comment

Links to this post:

Create a Link

<< Home