<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    The Royal Society of Chemistry has announced it will launch a new journal in summer 2008, Energy & Environmental Science, which will distinctly address both energy and environmental issues. In recognition of the importance of research in this subject, and the need for knowledge transfer between scientists throughout the world, from launch the RSC will make issues of Energy & Environmental Science available free of charge to readers via its website, for the first 18 months of publication. This journal will highlight the important role that the chemical sciences have in solving the energy problems we are facing today. It will link all aspects of energy and the environment by publishing research relating to energy conversion and storage, alternative fuel technologies, and environmental science. AlphaGalileo - December 10, 2007.

    Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. Therefore, soot development needs to be tackled at the source. Laser Induced Incandescence is a technique that reveals exactly where soot is generated and can be used by project partners to develop cleaner diesel engines. Terry Meyer, an Iowa State University assistant professor of mechanical engineering, is using similar laser technology to develop advanced sensors capable of screening the combustion behavior and soot characteristics specifically of biofuels. Eurekalert - December 7, 2007.

    Lithuania's first dedicated biofuel terminal has started operating in Klaipeda port. At the end of November 2007, the stevedoring company Vakaru krova (VK) started activities to manage transshipments. The infrastructure of the biodiesel complex allows for storage of up to 4000 cubic meters of products. During the first year, the terminal plans to transship about 70.000 tonnes of methyl ether, after that the capacities of the terminal would be increased. Investments to the project totaled €2.3 million. Agrimarket - December 5, 2007.

    New Holland supports the use of B100 biodiesel in all equipment with New Holland-manufactured diesel engines, including electronic injection engines with common rail technology. Overall, nearly 80 percent of the tractor and equipment manufacturer's New Holland-branded products with diesel engines are now available to operate on B100 biodiesel. Tractor and equipment maker John Deere meanwhile clarified its position for customers that want to use biodiesel blends up to B20. Grainnet - December 5, 2007.

    According to Wetlands International, an NGO, the Kyoto Protocol as it currently stands does not take into account possible emissions from palm oil grown on a particular type of land found in Indonesia and Malaysia, namely peatlands. Mongabay - December 5, 2007.

    Malaysia's oil & gas giant Petronas considers entering the biofuels sector. Zamri Jusoh, senior manager of Petronas' petroleum development management unit told reporters "of course our focus is on oil and gas, but I think as we move into the future we cannot ignore the importance of biofuels." AFP - December 5, 2007.

    In just four months, the use of biodiesel in the transport sector has substantially improved air quality in Metro Manila, data from the Philippines Department of Environment and Natural Resources (DENR) showed. A blend of one percent coco-biodiesel is mandated by the Biofuels Act of 2007 which took effect last May. By 2009, it would be increased to two percent. Philippine Star - December 4, 2007.

    Kazakhstan will next year adopt laws to regulate its fledgling biofuel industry and plans to construct at least two more plants in the next 18 months to produce environmentally friendly fuel from crops, industry officials said. According to Akylbek Kurishbayev, vice-minister for agriculture, he Central Asian country has the potential to produce 300,000 tons a year of biodiesel and export half. Kazakhstan could also produce up to 1 billion liters of bioethanol, he said. "The potential is huge. If we use this potential wisely, we can become one of the world's top five producers of biofuels," Beisen Donenov, executive director of the Kazakhstan Biofuels Association, said on the sidelines of a grains forum. Reuters - November 30, 2007.

    SRI Consulting released a report on chemicals from biomass. The analysis highlights six major contributing sources of green and renewable chemicals: increasing production of biofuels will yield increasing amounts of biofuels by-products; partial decomposition of certain biomass fractions can yield organic chemicals or feedstocks for the manufacture of various chemicals; forestry has been and will continue to be a source of pine chemicals; evolving fermentation technology and new substrates will also produce an increasing number of chemicals. Chemical Online - November 27, 2007.

    German industrial conglomerate MAN AG plans to expand into renewable energies such as biofuels and solar power. Chief Executive Hakan Samuelsson said services unit Ferrostaal would lead the expansion. Reuters - November 24, 2007.

    Analysts think Vancouver-based Ballard Power Systems, which pumped hundreds of millions and decades of research into developing hydrogen fuel cells for cars, is going to sell its automotive division. Experts describe the development as "the death of the hydrogen highway". The problems with H2 fuel cell cars are manifold: hydrogen is a mere energy carrier and its production requires a primary energy input; production is expensive, as would be storage and distribution; finally, scaling fuel cells and storage tanks down to fit in cars remains a huge challenge. Meanwhile, critics have said that the primary energy for hydrogen can better be used for electricity and electric vehicles. On a well-to-wheel basis, the cleanest and most efficient way to produce hydrogen is via biomass, so the news is a set-back for the biohydrogen community. But then again, biomass can be used more efficiently as electricity for battery cars. Canada.com - November 21, 2007.

    South Korea plans to invest 20 billion won (€14.8/$21.8 million) by 2010 on securing technologies to develop synthetic fuels from biomass, coal and natural gas, as well as biobutanol. 29 private companies, research institutes and universities will join this first stage of the "next-generation clean energy development project" led by South Korea's Ministry of Commerce, Industry and Energy. Korea Times - November 19, 2007.

    OPEC leaders began a summit today with Venezuelan President Hugo Chavez issuing a chilling warning that crude prices could double to US$200 from their already-record level if the United States attacked Iran or Venezuela. He urged assembled leaders from the OPEC, meeting for only the third time in the cartel's 47-year history, to club together for geopolitical reasons. But the cartel is split between an 'anti-US' block including Venezuela, Iran, and soon to return ex-member Ecuador, and a 'neutral' group comprising most Gulf States. France24 - November 17, 2007.

    The article "Biofuels: What a Biopact between North and South could achieve" published in the scientific journal Energy Policy (Volume 35, Issue 7, 1 July 2007, Pages 3550-3570) ranks number 1 in the 'Top 25 hottest articles'. The article was written by professor John A. Mathews, Macquarie University (Sydney, Autralia), and presents a case for a win-win bioenergy relationship between the industrialised and the developing world. Mathews holds the Chair of Strategic Management at the university, and is a leading expert in the analysis of the evolution and emergence of disruptive technologies and their global strategic management. ScienceDirect - November 16, 2007.

Creative Commons License


Wednesday, December 12, 2007

Diversified Energy wins DoD contract for portable renewable synfuel plant

Diversified Energy Corporation (DEC) and Velocys Inc. have been selected by the U.S. Department of Defense (DoD) to design a portable renewable fuel production system based on DEC’s breakthrough HydroMax gasification technology and Velocys’ advanced Fischer-Tropsch approach. The goal of the DoD funded effort is to develop a transportable system that can convert waste products generated at military installations into 50 – 500 barrels per day of high performance renewable fuels such as diesel and aviation fuel. The technologies are the same as those used for the production of synthetic biofuels (biomass-to-liquids) that can be made from any type of cellulosic biomass.

The development of portable, small-scale biomass-to-liquids (BtL) plants that yield ultra-clean synthetic biofuels would be a major breakthrough that could unlock the large potential of cellulosic biomass. It would considerably improve the logistics of next-generation biofuels by allowing producers to decentralise production. Decentralisation consists of placing facilities near abundant biomass sources, instead of transporting bulky feedstocks to a central facility.

DoD is the single largest fuel consumer in the United States, with an annual fuel budget of approximately $9 Billion and rising. Forward operating military bases generate scores of waste material and have an enormous demand for fuel products. As a result, an opportunity exists to incorporate advanced energy conversion technologies that can utilize waste materials to generate high performance fuels; thereby, reducing the logistical burden of fuel transportation for military operations. These benefits will ultimately result in lower military operating costs and markedly improved energy security for the DoD.

DEC’s HydroMax gasification technology, under license from Alchemix Corporation, will be used to convert waste products (biomass, solid-waste, etc.) into a synthetic gas (syngas). The Velocys fuel synthesis technology will then convert the syngas from HydroMax into diesel and jet fuel that can be utilized for a wide variety of military applications. This DOD Small Business Innovative Research (SBIR) Phase I project will include bench-scale test data analysis, conceptual design of a transportable fuel production system, economic analysis, and a detailed assessment of system modularity and transportability.

Utilizing an iron/tin molten metal based reactor, the HydroMax system produces both carbon monoxide (CO) and hydrogen (H2) in separate and distinct streams from the reactor. These streams can be used to create electricity in turbines, produce transportation fuels or chemicals through various synthesis processes, or deliver high-quality hydrogen for a multitude of applications:
:: :: :: :: :: :: :: :: :: ::
HydroMax differs substantially from traditional gasification technologies, whose basic approach is to create synthetic gas by partially combusting coal in an oxygen-starved environment - a technique which has seen little change since its inception in the late 18th century. By leveraging proven processes from the metals and mining industries, the HydroMax technique intends to break the status-quo paradigm by delivering gasification systems at up to 50% the cost of traditional systems, with 80+% efficiency, and demonstrating high availability.

Using two distinct steps (schematic, click to enlarge), the HydroMax process begins with a molten iron/tin (FeSn) bath heated to 1300° C. In Step A, steam is injected into the bath which is then thermo-chemically split resulting in H2 gas (released) and oxidized iron. After the Fe is oxidized, steam injection ceases and a carbon source (coal, petroleum coke, tires, biomass, etc) is injected into the reactor (Step B). Carbon has a high affinity to oxygen and reduces the oxidation of Fe to its pure form and produces a CO-rich syngas which is released for use.

Diversified Energy and its partners are working to execute on a research and development plan to validate the operational and economic benefits of the system. The company is spending its own resources and engaging with the government to conduct a series of hardware tests aimed at commercializing HydroMax as quickly as possible.
Working with Diversified Energy on this critical DoD fuel project is ideal for Velocys as our technology integrates nicely with DEC’s HydroMax gasification approach. Our gas-to-liquids technology is one-tenth that of conventional systems and, as a result, we are able to achieve the transportability objective outlined by the DoD. - Jeff McDaniel, Velocys Business Development Manager
At the conclusion of the Phase I SBIR effort, the Diversified Energy/Velocys team will compete for a Phase II project that will fund development of a prototype integrated fuel production system.

Headquartered in Gilbert, Arizona, Diversified Energy Corporation () is a privately held alternative and renewable energy company focused on maturing innovative technologies, developing commercial energy projects, and providing engineering services support to project developers. Principal areas of expertise include gasification, biofuels, and algae production.

Velocys, Inc. is developing microchannel technology that transforms critical aspects of energy, chemicals and biofuels production. Velocys, a subsidiary of Battelle Memorial Institute, was launched in 2001 and has developed a portfolio of 70 patents and received $100 million of investment from industry leading partners, including Dow Chemical, ABB and Total S.A. Velocys is headquartered near Plain City, Ohio.

References:

Diversified Energy: Hydromax brochure [*.pdf].



0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home