<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network

    The Intergovernmental Panel on Climate Change (IPCC) kicks off the meeting in Valencia, Spain, which will result in the production of the Synthesis Report on climate change. The report will summarize the core findings of the three volumes published earlier by the separate working groups. IPCC - November 12, 2007.

    Biopact's Laurens Rademakers is interviewed by Mongabay on the risks of large-scale bioenergy with carbon storage (BECS) proposals. Even though Biopact remains positive about BECS, because it offers one of the few safe systems to mitigate climate change in a drastic way, care must be take to avoid negative impacts on tropical forests. Mongabay - November 10, 2007.

    According to the latest annual ranking produced by The Scientist, Belgium is the world's best country for academic research, followed by the U.S. and Canada. Belgium's top position is especially relevant for plant, biology, biotechnology and bioenergy research, as these are amongst the science fields on which it scores best. The Scientist - November 8, 2007.

    Mascoma Corporation, a cellulosic ethanol company, today announced the acquisition of Celsys BioFuels, Inc. Celsys BioFuels was formed in 2006 to commercialize cellulosic ethanol production technology developed in the Laboratory of Renewable Resources Engineering at Purdue University. The Celsys technology is based on proprietary pretreatment processes for multiple biomass feedstocks, including corn fiber and distiller grains. The technology was developed by Dr. Michael Ladisch, an internationally known leader in the field of renewable fuels and cellulosic biofuels. He will be taking a two-year leave of absence from Purdue University to join Mascoma as the company’s Chief Technology Officer. Business Wire - November 7, 2007.

    Bemis Company, Inc. announced today that it will partner with Plantic Technologies Limited, an Australian company specializing in starch-based biopolymers, to develop and sell renewably resourced flexible films using patented Plantic technology. Bemis - November 7, 2007.

    Hungary's Kalocsa Hõerõmû Kft is to build a HUF 40 billion (€158.2 million) straw-fired biomass power plant with a maximum capacity of 49.9 megawatts near Kalocsa in southern Hungary. Portfolio Hungary - November 7, 2007.

    Canada's Gemini Corporation has received approval to proceed into the detailed engineering, fabrication and construction phases of a biogas cogeneration facility located in the Lethbridge, Alberta area, the first of its kind whereby biogas production is enhanced through the use of Thermal Hydrolysis technology, a high temperature, high pressure process for the safe destruction of SRM material from the beef industry. The technology enables a facility to redirect waste material, previously shipped to landfills, into a valuable feedstock for the generation of electricity and thermal energy. This eliminates the release of methane into the environment and the resultant solids are approved for use as a land amendment rather than re-entering the waste stream. In addition, it enhances the biogas production process by more than 25%. Market Wire - November 7, 2007.

    A new Agency to manage Britain's commitment to biofuels was established today by Transport Secretary Ruth Kelly. The Renewable Fuels Agency will be responsible for the day to day running of the Renewable Transport Fuels Obligation, coming into force in April next year. By 2010, the Obligation will mean that 5% of all the fuels sold in the UK should come from biofuels, which could save 2.6m to 3m tonnes of carbon dioxide a year. eGov Monitor - November 5, 2007.

    Prices for prompt loading South African coal cargoes reached a new record last week with a trade at $85.00 a tonne free-on-board (FOB) for a February cargo. Strong Indian demand and tight supply has pushed South African prices up to record levels from around $47.00 at the beginning of the year. European DES/CIF ARA coal prices have remained fairly stable over the past few days, having traded up to a record $130.00 a tonne DES ARA late last week. Fair value is probably just below $130.00 a tonne, traders said. At this price, some forms of biomass become directly competitive with coal. Reuters Africa - November 4, 2007.

    The government of India's Harayana state has decided to promote biomass power projects based on gasification in a move to help rural communities replace costly diesel and furnace oil. The news was announced during a meeting of the Haryana Renewable Energy Development Agency (HAREDA). Six pilot plants have demonstrated the efficiency and practicability of small-scale biomass gasification. Capital subsidies will now be made available to similar projects at the rate of Rs 2.5 lakh (€4400) per 100 KW for electrical applications and Rs 2 lakh (€3500) per 300 KW for thermal applications. New Kerala - November 1, 2007.

Creative Commons License

Tuesday, November 13, 2007

Researchers develop efficient biohydrogen production technique based on microbial electrolysis cell

Scientists from Penn State University have developed a technique to efficiently produce hydrogen from biomass via a process based on the way microbial fuel cells (MFCs) work. Bruce E. Logan, the Kappe professor of environmental engineering, and Shaoan Cheng, research associate, report the method in today's early edition of the Proceedings of the National Academy of Sciences. The report titled 'Sustainable and efficient biohydrogen production via electrohydrogenesis' is an open access article.

The new biohydrogen production method is considerably more efficient than the electrolysis of water, which, in order to produce renewable and clean hydrogen would have to rely on electricity from solar, wind, biomass or nuclear power plants.

The new technique is capable of directly generating renewable hydrogen in an environmentally friendly way from cellulose and other biodegradable organic materials. The researchers state that, contrary to cellulosic ethanol production which makes use of agricultural residues or dedicated non-food energy crops but which is at least a decade away, the biohydrogen production method can use this abundant source of biomass already today. They suggest blending the biohydrogen with methane from natural gas or biogas as a transport fuel.

The researchers used naturally occurring bacteria in a microbial electrolysis cell (MEC, picture, click to enlarge) with acetic acid – the acid found in vinegar. Acetic acid is also the predominant acid produced by fermentation of glucose or cellulose. The anode was granulated graphite, the cathode was carbon with a platinum catalyst, and they used an off-the-shelf anion exchange membrane. In other words, they basically set up a microbial fuel cell (more about MFCs here). The bacteria consume the acetic acid and release electrons and protons creating up to 0.3 volts. When more than 0.2 volts are added from an outside source, hydrogen gas bubbles up from the liquid.

The process produces 288 percent more energy in hydrogen than the electrical energy that is added to the process. Water hydrolysis, a standard method for producing hydrogen, is only 50 to 70 percent efficient. Even if the microbial electrolysis cell process is set up to bleed off some of the hydrogen to produce the added energy boost needed to sustain hydrogen production, the process still creates 144 percent more available energy than the electrical energy used to produce it:
:: :: :: :: :: :: :: :: :: :: :: ::

For those who think that a hydrogen economy is far in the future, Logan suggests that hydrogen produced from cellulose and other renewable biomass could be blended with natural gas for use in natural gas vehicles.
We drive a lot of vehicles on natural gas already. Natural gas is essentially methane. Methane burns fairly cleanly, but if we add hydrogen, it burns even more cleanly and works fine in existing natural gas combustion vehicles. - Bruce E. Logan, lead author
The range of efficiencies of hydrogen production based on electrical energy and energy in a variety of organic substances is between 63 and 82 percent. Both lactic acid and acetic acid achieve 82 percent, while unpretreated cellulose is 63 percent efficient. Glucose is 64 percent efficient.

Another potential use for microbial-electrolysis-cell produced hydrogen is in fertilizer manufacture. Currently fertilizer is produced in large factories and trucked to farms. With microbial electrolysis cells, very large farms or farm cooperatives could produce hydrogen from wood chips and then through a common process, use the nitrogen in the air to produce ammonia or nitric acid. Both of these are used directly as fertilizer or the ammonia could be used to make ammonium nitrate, sulfate or phosphate.

The researchers have filed for a patent on this work. Air Products and Chemicals, Inc. and the National Science Foundation supported the research.

According to large well-to-wheel studies, the production of hydrogen from biomass is the most efficient and cleanest production pathway out of 28 options, including hydrogen from wind, nuclear, and electricity mixes (previous post and here for a large EU-funded WTW study). For this reason, some have suggested that biohydrogen is the most feasible way of reviving the idea of the 'hydrogen economy' (earlier post).

: A microbial electrolysis cell (MEC) shown with the power source used to augment the voltage produced by the bacteria. Bacteria grow in the anode chamber, forming a biofilm on graphite granules, while hydrogen gas is released at the cathode and bubbles up and into the tube on top of the reactor. Credit: Photograph by Shaoan Cheng, Penn State University

Shaoan Cheng and Bruce E. Logan, "Sustainable and efficient biohydrogen production via electrohydrogenesis" [open access], Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0706379104, Published online before print November 13, 2007

Penn State Live: Clean, carbon-neutral hydrogen on the horizon - November 12, 2007.

Biopact: Microbial fuel cell development speeds up: from biopower in space to the developing world - September 30, 2007

Biopact: Biohydrogen, a way to revive the 'hydrogen economy'? - August 20, 2006


Howie G said...

This is a sort of Rube goldberg scheme, or something from J. Swift's Island of Laputa. It will never work on a large scale. Find out why global warming is ridiculous at http://greendebate.blogspot.com/2007/11/co2-science-org-is-very-good-people-for.html, and have some fun.

9:54 PM  
Phil said...

This is exciting. I'm always glad to see biological innovation driving technology forward. Combine it with that new hydrogen storage material, and it seems like hydrogen fuel cells will become viable sooner than we had initially anticipated.

5:10 AM  

Post a Comment

Links to this post:

Create a Link

<< Home