Syngenta partners with QUT for sugarcane biomass conversion to biofuels - draws on molecular farming
Swiss biotech company Syngenta announced today that it has agreed a research partnership in Australia that focuses on the development of cost effective conversion of sugarcane bagasse to biofuels, including the delivery of plant-expressed enzymes. This means it takes a leap towards 'third generation' biofuel production. The research partners are the Queensland University of Technology (QUT), its technology transfer and commercialization company qutbluebox and the Australian agbiotech company Farmacule BioIndustries. A new Syngenta Centre for Sugarcane Biofuel Development will be established at QUT’s campus in Brisbane, Australia. The partnership will draw on, amongst other things, molecular farming techniques developed at QUT.
Molecular farming involves growing crops to produce proteins, bioplastics and other products rather than traditional food or fibre. In order for a plant to be used to produce specific molecules, a novel gene is inserted into its chromosomes. Regulatory code is inserted with that gene which tells the plant where to produce the desired protein within its leaves, roots or seeds (schematic, click to enlarge). Farmacule works through this process with the aid of its In-Plant Activation technology ('INPACT').
In the same way that sugarcane is harvested and refined to produce sugar, proteins manufactured inside the plants through molecular farming are later extracted after a crop is harvested and processed. Instead of producing a food product, the end result could be a plastic, biofuel, medicine or even an additive for the paper manufacturing process. There is a growing worldwide demand for high value proteins. Molecular farming provides a cost effective and scaleable production mechanism to meet this demand.
Syngenta and its partners will apply the technique to sugarcane which will be modified in such a way that the crop makes its own bioconversion enzymes as it grows. Earlier, scientists succeeded in doing this for maize (earlier post), thus opening the era of third generation biofuels (overview here). With first generation techniques, sugarcane ethanol made from the sucrose in the cane yields around 6000 liters per hectare. When the residue from this process, sugarcane bagasse, is efficiently converted into cellulosic ethanol, the same hectare of sugarcane is expected to yield around 12,000 liters of biofuel with a very strong energy balance.
energy :: sustainability :: ethanol :: biomass :: bioenergy :: biofuels :: lignocellulose :: bagasse :: sugarcane :: biotechnology :: molecular farming ::
QUT is a leading Australian university and is widely acknowledged for its research excellence in plant biotechnology. qutbluebox is the technology transfer and commercialization company for QUT. Farmacule BioIndustries is developing molecular farming technology to cost effectively mass produce high-value proteins, biofuels and bioplastics in plants for various industrial, therapeutic and diagnostic applications. All three partners are based in Brisbane.
Schematic: molecular farming technique. Courtesy: Farmacule BioIndustries.
References:
Syngenta: Syngenta starts research partnership in Australia for sugarcane biomass conversion to biofuels - October 22, 2007.
Farmacule BioIndustries: Inpact and Molecular Farming.
Biopact: A quick look at 'fourth generation' biofuels - October 08, 2007
Biopact: Third generation biofuels: scientists patent corn variety with embedded cellulase enzymes - May 05, 2007
Molecular farming involves growing crops to produce proteins, bioplastics and other products rather than traditional food or fibre. In order for a plant to be used to produce specific molecules, a novel gene is inserted into its chromosomes. Regulatory code is inserted with that gene which tells the plant where to produce the desired protein within its leaves, roots or seeds (schematic, click to enlarge). Farmacule works through this process with the aid of its In-Plant Activation technology ('INPACT').
In the same way that sugarcane is harvested and refined to produce sugar, proteins manufactured inside the plants through molecular farming are later extracted after a crop is harvested and processed. Instead of producing a food product, the end result could be a plastic, biofuel, medicine or even an additive for the paper manufacturing process. There is a growing worldwide demand for high value proteins. Molecular farming provides a cost effective and scaleable production mechanism to meet this demand.
Syngenta and its partners will apply the technique to sugarcane which will be modified in such a way that the crop makes its own bioconversion enzymes as it grows. Earlier, scientists succeeded in doing this for maize (earlier post), thus opening the era of third generation biofuels (overview here). With first generation techniques, sugarcane ethanol made from the sucrose in the cane yields around 6000 liters per hectare. When the residue from this process, sugarcane bagasse, is efficiently converted into cellulosic ethanol, the same hectare of sugarcane is expected to yield around 12,000 liters of biofuel with a very strong energy balance.
This collaboration brings together dynamic new technologies as well as the expertise and infrastructure to tackle the challenge of producing cellulosic ethanol from cane. It has the potential to substantially decrease the cost of bioethanol production and significantly reduce greenhouse gas emissions. - Professor James Dale, Director at the Centre for Tropical Crops and Biocommodities at Queensland University of TechnologyThe Queensland Government strongly supports this partnership and will invest a total of AU$ 5.1 million (€3.1/US$ 4.6 million) for the establishment of the new Syngenta centre and for the development of a related biocommodities pilot plant:
energy :: sustainability :: ethanol :: biomass :: bioenergy :: biofuels :: lignocellulose :: bagasse :: sugarcane :: biotechnology :: molecular farming ::
We are very pleased to team up with such renowned experts on sugarcane as Queensland University of Technology and Farmacule. This broadens Syngenta’s biofuels strategy into new crops and speeds up our development of biomass conversion technologies to make cellulosic ethanol economically viable. - Robert Berendes, Head of Business Development at Syngenta.Under the collaboration agreement Syngenta will have exclusive global marketing rights for the products, excluding for Australia, New Zealand and Pacific islands, where rights are held by the other project partners. Syngenta can also use the developed technologies in other crops. The Syngenta Centre for Sugarcane Biofuel Development will commence operations immediately.
QUT is a leading Australian university and is widely acknowledged for its research excellence in plant biotechnology. qutbluebox is the technology transfer and commercialization company for QUT. Farmacule BioIndustries is developing molecular farming technology to cost effectively mass produce high-value proteins, biofuels and bioplastics in plants for various industrial, therapeutic and diagnostic applications. All three partners are based in Brisbane.
Schematic: molecular farming technique. Courtesy: Farmacule BioIndustries.
References:
Syngenta: Syngenta starts research partnership in Australia for sugarcane biomass conversion to biofuels - October 22, 2007.
Farmacule BioIndustries: Inpact and Molecular Farming.
Biopact: A quick look at 'fourth generation' biofuels - October 08, 2007
Biopact: Third generation biofuels: scientists patent corn variety with embedded cellulase enzymes - May 05, 2007
0 Comments:
Post a Comment
Links to this post:
Create a Link
<< Home