University of Tennessee and Mascoma team up to build cellulosic ethanol biorefinery
The University of Tennessee and Mascoma Corporation plan [*.pdf] to jointly build and operate a 5 million gallon per year cellulosic ethanol biorefinery in Monroe County.
The principal product of the facility will be cellulosic ethanol derived from non-food biomass, like grasses such as switchgrass, wood chips and other cellulosic materials.
Switchgrass
Because it does not compete with food or feed uses, using dedicated energy crops like switchgrass to produce cellulosic biofuels on marginal crop land is widely seen as the answer to producing affordable, domestic, renewable fuel without raising food or feed costs.
When operating at full capacity, the facility will require 170 tons per day of switchgrass and other agricultural and forest biomass. An $8 million farmer incentive program is under development to encourage local production of this new energy crop, switchgrass.
The comprehensive switchgrass program includes direct payments to farmers in advance of an established market for switchgrass. Participating farmers will receive high quality switchgrass seed for planting, as well as research and technical support related to switchgrass production.
Consolidated bioprocessing
Mascoma's focus is on genetically engineering thermophilic ethanol-producing bacteria in order to facilitate the transition of cellulose ethanol processing to a Consolidated Bioprocessing (CBP) configuration. CBP comes down to reducing the number of biologically mediated bioconversion steps into a single process. It is widely recognized as the simplest, lowest cost configuration for producing cellulosic ethanol.
Mascoma’s lead organism for thermophilic 'Simultaneous Saccarification and Fermentation' (tSSF) is Thermoanaerobacterium saccharolyticum. This organism has been modified to produce stoichiometric quantities of ethanol from a xylose feed. This strain is attractive for use in a tSSF configuration as the elevated fermentation temperature can substantially reduce cellulase requirements in an industrial processing operation:
energy :: sustainability :: biomass :: bioenergy :: biofuels :: cellulose :: ethanol :: biorefinery :: bioconversion ::
Location and logistics
The planned biorefinery will be located 35 miles south of Knoxville in the Niles Ferry Industrial Park in Vonore. Pending a successful permitting process, construction is expected to begin by the end of 2007 and the facility will be operational in 2009.
A key in the selection of the Monroe County site was the economic and agricultural development potential in the area, reflecting the agriculture-based Biofuels Initiative's goal of using ethanol production as an economic driver throughout the state, especially in rural communities.
The site sits in the heart of a productive farming region where the agricultural community has shown interest in the biofuels effort, says Dr. Kelly Tiller, director of external operations for the UT Office of Bioenergy Programs. An economist with the UT Institute of Agriculture, Tiller is also one of the authors of the business model for the Biofuels Initiative.
The Niles Ferry site also has all needed infrastructure to support the facility, and is close enough to Knoxville and Oak Ridge to allow easy movement by researchers and students to and from the site, Tiller explained.
The plant will be about one-tenth the size of a commercial production facility. This will allow researchers to fine-tune the operations and process used in order to create a system that can be expanded to larger plants across the state in coming years.
University of Tennessee Biofuels Initiative
The business partnership and plans for the facility are a result of the UT Biofuels Initiative [*.pdf], a research and business model designed to reduce dependence on foreign oil and provide significant economic and environmental benefits for Tennessee’s farmers and communities.
Tennessee is an ideal partner for Mascoma as the first state committed to producing switchgrass as an energy crop, said Bruce A. Jamerson, Mascoma's chief executive officer.
The demonstration scale research facility is also a complement to research efforts at the Oak Ridge National Laboratory, another key partner in the state's biofuels strategy. In June, the Oak Ridge National Laboratory was awarded $125 million from the U.S. Department of Energy to fund the Bioenergy Science Center, a research collaborative to address fundamental science and technology challenges to commercially producing cellulosic ethanol.
The Tennessee Biofuels Initiative, through the management operations of the demonstration biorefinery, will work with investigators at Oak Ridge National Laboratory to test and validate discoveries that could lead to enhanced efficiency in the conversion of cellulose to ethanol. The project teams view the biorefinery as a laboratory for large-scale chemistry experiments in cellulosic conversion to ethanol.
It is expected that eventually Tennessee could produce over 1 billion gallons of cellulosic ethanol a year, which could offset up to one-third of the state’s petroleum usage.
The principal product of the facility will be cellulosic ethanol derived from non-food biomass, like grasses such as switchgrass, wood chips and other cellulosic materials.
Switchgrass
Because it does not compete with food or feed uses, using dedicated energy crops like switchgrass to produce cellulosic biofuels on marginal crop land is widely seen as the answer to producing affordable, domestic, renewable fuel without raising food or feed costs.
When operating at full capacity, the facility will require 170 tons per day of switchgrass and other agricultural and forest biomass. An $8 million farmer incentive program is under development to encourage local production of this new energy crop, switchgrass.
The comprehensive switchgrass program includes direct payments to farmers in advance of an established market for switchgrass. Participating farmers will receive high quality switchgrass seed for planting, as well as research and technical support related to switchgrass production.
Consolidated bioprocessing
Mascoma's focus is on genetically engineering thermophilic ethanol-producing bacteria in order to facilitate the transition of cellulose ethanol processing to a Consolidated Bioprocessing (CBP) configuration. CBP comes down to reducing the number of biologically mediated bioconversion steps into a single process. It is widely recognized as the simplest, lowest cost configuration for producing cellulosic ethanol.
Mascoma’s lead organism for thermophilic 'Simultaneous Saccarification and Fermentation' (tSSF) is Thermoanaerobacterium saccharolyticum. This organism has been modified to produce stoichiometric quantities of ethanol from a xylose feed. This strain is attractive for use in a tSSF configuration as the elevated fermentation temperature can substantially reduce cellulase requirements in an industrial processing operation:
energy :: sustainability :: biomass :: bioenergy :: biofuels :: cellulose :: ethanol :: biorefinery :: bioconversion ::
Location and logistics
The planned biorefinery will be located 35 miles south of Knoxville in the Niles Ferry Industrial Park in Vonore. Pending a successful permitting process, construction is expected to begin by the end of 2007 and the facility will be operational in 2009.
A key in the selection of the Monroe County site was the economic and agricultural development potential in the area, reflecting the agriculture-based Biofuels Initiative's goal of using ethanol production as an economic driver throughout the state, especially in rural communities.
The site sits in the heart of a productive farming region where the agricultural community has shown interest in the biofuels effort, says Dr. Kelly Tiller, director of external operations for the UT Office of Bioenergy Programs. An economist with the UT Institute of Agriculture, Tiller is also one of the authors of the business model for the Biofuels Initiative.
The Niles Ferry site also has all needed infrastructure to support the facility, and is close enough to Knoxville and Oak Ridge to allow easy movement by researchers and students to and from the site, Tiller explained.
The plant will be about one-tenth the size of a commercial production facility. This will allow researchers to fine-tune the operations and process used in order to create a system that can be expanded to larger plants across the state in coming years.
University of Tennessee Biofuels Initiative
The business partnership and plans for the facility are a result of the UT Biofuels Initiative [*.pdf], a research and business model designed to reduce dependence on foreign oil and provide significant economic and environmental benefits for Tennessee’s farmers and communities.
Tennessee is an ideal partner for Mascoma as the first state committed to producing switchgrass as an energy crop, said Bruce A. Jamerson, Mascoma's chief executive officer.
The demonstration scale research facility is also a complement to research efforts at the Oak Ridge National Laboratory, another key partner in the state's biofuels strategy. In June, the Oak Ridge National Laboratory was awarded $125 million from the U.S. Department of Energy to fund the Bioenergy Science Center, a research collaborative to address fundamental science and technology challenges to commercially producing cellulosic ethanol.
The Tennessee Biofuels Initiative, through the management operations of the demonstration biorefinery, will work with investigators at Oak Ridge National Laboratory to test and validate discoveries that could lead to enhanced efficiency in the conversion of cellulose to ethanol. The project teams view the biorefinery as a laboratory for large-scale chemistry experiments in cellulosic conversion to ethanol.
It is expected that eventually Tennessee could produce over 1 billion gallons of cellulosic ethanol a year, which could offset up to one-third of the state’s petroleum usage.
0 Comments:
Post a Comment
Links to this post:
Create a Link
<< Home