<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    The Midlands Consortium, comprised of the universities of Birmingham, Loughborough and Nottingham, is chosen to host Britain's new Energy Technologies Institute, a £1 billion national organisation which will aim to develop cleaner energies. University of Nottingham - September 21, 2007.

    The EGGER group, one of the leading European manufacturers of chipboard, MDF and OSB boards has begun work on installing a 50MW biomass boiler for its production site in Rion. The new furnace will recycle 60,000 tonnes of offcuts to be used in the new combined heat and power (CHP) station as an ecological fuel. The facility will reduce consumption of natural gas by 75%. IHB Network - September 21, 2007.

    Analysts fear that record oil prices will fuel general inflation in Kenya, particularly hitting the poorest hard. They call for the development of new policies and strategies to cope with sustained high oil prices. Such policies include alternative fuels like biofuels, conservation measures, and more investments in oil and gas exploration. The poor in Kenya are hit hardest by the sharp increase, because they spend most of their budget on fuel and transport. Furthermore, in oil intensive economies like Kenya, high oil prices push up prices for food and most other basic goods. All Africa - September 20, 2007.

    Finland's Metso Power has won an order to supply Kalmar Energi Värme AB with a biomass-fired power boiler for the company’s new combined heat and power plant in Kalmar on the east coast of Sweden. Start-up for the plant is scheduled for the end of 2009. The value of the order is approximately EUR 55 million. The power boiler (90 MWth) will utilize bubbling fluidized bed technology and will burn biomass replacing old district heating boilers and reducing the consumption of oil. The delivery will also include a flue gas condensing system to increase plant's district heat production. Metso Corporation - September 19, 2007.

    Jo-Carroll Energy announced today its plan to build an 80 megawatt, biomass-fueled, renewable energy center in Illinois. The US$ 140 million plant will be fueled by various types of renewable biomass, such as clean waste wood, corn stover and switchgrass. Jo-Carroll Energy - September 18, 2007.

    Beihai Gofar Marine Biological Industry Co Ltd, in China's southern region of Guangxi, plans to build a 100,000 tonne-per-year fuel ethanol plant using cassava as feedstock. The Shanghai-listed company plans to raise about 560 million yuan ($74.5 million) in a share placement to finance the project and boost its cash flow. Reuters - September 18, 2007.

    The oil-dependent island state of Fiji has requested US company Avalor Capital, LLC, to invest in biodiesel and ethanol. The Fiji government has urged the company to move its $250million 'Fiji Biofuels Project' forward at the earliest possible date. Fiji Live - September 18, 2007.

    The Bowen Group, one of Ireland's biggest construction groups has announced a strategic move into the biomass energy sector. It is planning a €25 million investment over the next five years to fund up to 100 projects that will create electricity from biomass. Its ambition is to install up to 135 megawatts of biomass-fuelled heat from local forestry sources, which is equal to 50 million litres or about €25m worth of imported oil. Irish Examiner - September 16, 2007.

    According to Dr Niphon Poapongsakorn, dean of Economics at Thammasat University in Thailand, cassava-based ethanol is competitive when oil is above $40 per barrel. Thailand is the world's largest producer and exporter of cassava for industrial use. Bangkok Post - September 14, 2007.

    German biogas and biodiesel developer BKN BioKraftstoff Nord AG has generated gross proceeds totaling €5.5 million as part of its capital increase from authorized capital. Ad Hoc News - September 13, 2007.

    NewGen Technologies, Inc. announced that it and Titan Global Holdings, Inc. completed a definitive Biofuels Supply Agreement which will become effective upon Titan’s acquisition of Appalachian Oil Company. Given APPCO’s current distribution of over 225 million gallons of fuel products per year, the initial expected ethanol supply to APPCO should exceed 1 million gallons a month. Charlotte dBusinessNews - September 13, 2007.

    Oil prices reach record highs as the U.S. Energy Information Agency releases a report that showed crude oil inventories fell by more than seven million barrels last week. The rise comes despite a decision by the international oil cartel, OPEC, to raise its output quota by 500,000 barrels. Reuters - September 12, 2007.

    OPEC decided today to increase the volume of crude supplied to the market by Member Countries (excluding Angola and Iraq) by 500,000 b/d, effective 1 November 2007. The decision comes after oil reached near record-highs and after Saudi Aramco announced that last year's crude oil production declined by 1.7 percent, while exports declined by 3.1 percent. OPEC - September 11, 2007.

    GreenField Ethanol and Monsanto Canada launch the 'Gro-ethanol' program which invites Ontario's farmers to grow corn seed containing Monsanto traits, specifically for the ethanol market. The corn hybrids eligible for the program include Monsanto traits that produce higher yielding corn for ethanol production. MarketWire - September 11, 2007.


Creative Commons License


Saturday, September 22, 2007

Report: synthetic biofuels (BtL) and bioenergy efficient, competitive and sustainable in Germany

A new comprehensive report by Germany's Karlsruhe Institute of Technology (KIT) analyses the economic, environmental and technological aspects of biomass and its conversion into second-generation liquid fuels, electricity and heat. It concludes that both bioenergy (heat, electricity) and biomass-to-liquids (BtL) production from wood and agriculutral residues in Germany is (1) competitive with fossil fuels, (2) energy efficient and (3) offers a sustainable and cost-effective way to reduce greenhouse gas emissions. A consortium affiliated with the KIT has meanwhile begun construction on the specific BtL facilities discussed in the report (earlier post).

The researchers found that synthetic biofuels (gasified biomass liquefied via the Fischer-Tropsch process) are competitive when oil is priced above $65 per barrel and the synfuels are not taxed. Depending on the capacity of the plants, production of electricity from the particular biomass sources analysed (forestry residues, straw) is close to competitive with coal when co-fired with coal or used in highly efficient combined heat and power (CHP) plants. Heat from the same biomass is most competitive and does not require any subsidies or tax-exemptions today to compete with heating oil (biomass being 30% less costly).

The most cost-effective way to reduce CO2 emissions is by using these types of biomass directly for the production of heat, followed by combined heat and power generation (CHP), co-firing biomass with coal, and electricity from gasified biomass. Fischer-Tropsch fuels were not effective in this regard, but have economic benefits as replacements for oil products and petrochemicals.

The report titled 'Kraftstoff, Strom und Wärme aus Stroh und Waldrestholz – Eine systemanalytische Untersuchung' [*.pdf] (Fuels, Electricity and Heat from Straw and Forestry Residues), written by scientists from KIT's 'Institut für Technikfolgenabschätzung und Systemanalyse' (ITAS) says the new bioconversion technologies sharpen competition amongst renewable energy technologies (especially wind and solar) but also within the biomass sector itself. This is so because biomass can be used for a large range of end-products: heat, electricity, aternatives to petrochemicals and transport fuels. This battle for investments will have positive effects on the sector as a whole and will result in the gradual emergence of the most efficient conversion pathways.

The biomass-to-liquids system analysed by ITAS - the so called 'bioliq' concept currently being implemented by the Forschungszentrum Karlsruhe - involves a three step process:
  1. decentralised pyrolysis plants are located close to the biomass source (forests, agricultural zones), where it undergoes fast-pyrolysis resulting in 'pyrolysis slurry', a mixture of bio-oil and pyrolysis coke. This first step turns the bulky biomass into a raw product with a higher energy density, so it can be transported more efficiently to a central location for further processing (the study analyses both decentralised and centralised concepts). The researchers analysed the efficiency of 7 different fast-pyrolysis reactor types
  2. the pyrolysis products arrive at a gasification facility, where they are turned into a carbon monoxide and hydrogen-rich gas (syngas); 5 gasification technologies were compared
  3. after cleaning and conditioning the syngas, it is liquefied via the Fischer-Tropsch (FT) process (synthesis of hydrogen and carbon monoxide) into synthetic biofuels which can be further refined into a range of very clean transport fuels (alternatives to gasoline, diesel, kerosene, and dimethyl-ether and methanol obtained from natural gas); three types of FT-reactors were compared
The researchers analysed the specific advantages of using the dominant biomass sources – straw and wood residues – as well as the disadvantages of the technology, and compared the concept to competing alternative uses for biomass (heat and electricity).

As a starting point, selected plant locations were chosen in the federal state of Baden-Württemberg (southwest Germany), on the basis of which the volume of straw and wood residues available for energy use was outlined, as well as the supply costs for these biomass sources. The technology analysis regarding liquid fuel production from biomass entailed a detailed description of the present status quo of fast pyrolysis, gasification, gas cleaning/conditioning, and Fischer Tropsch synthesis.

Energy balance
The energy balance of the synthetic biofuels based on the bioliq concept in the specified setting, was found to be strong. For fuels obtained from straw the final net balance - after pretreating, drying, pyrolysing, gasifying, upgrading, liquefying and refining the feedstock - was 34%; for synfuels based on forest residues the net balance was 29% (graph, click to enlarge). The energy inputs that go into harvesting and transporting the biomass and the pyrolysis slurry, are between 5 and 12% of the energy content of the FT-fuels, depending on the concept (decentralized/centralized):
:: :: :: :: :: :: :: :: :: :: ::

Economics
Assuming the combined use of straw and wood residues, the economic estimates for energy self-sufficient plants reveal that bio-based FT-fuels can be produced at costs in a range from €0.90 to 1.00 per litre, depending on plant capacity. The biomass supply accounts for 50-65% to the production costs of FT-fuel, depending on the assumed plant capacity. The economics of two biorefineries were analysed: a small one with a conversion capacity of 0.2 million tonnes of biomass per year and one with a 1 million tonne capacity. Compare this with an oil refinery which requires at least a 10 million tonne capacity to be commercially feasible. If the synthetic biofuels produced in the analysed refineries are not additionally charged with a mineral oil tax, they compete with fossil diesel at crude oil prices of $65/bbl.

Depending on the capacity of the plants, production of electricity from forestry residues and straw is close to competitive with coal when co-fired with coal or used in highly efficient combined heat and power (CHP) plants. Large CHP plants (10-67MWin) burning biomass offer heat and electricity in a more competitive than the fossil baseline. Small CHP plants (1.5-13.4MWel) are far less cost-effective. The costs for eletcricity obtained from gasification of the two types of biomass range from €80 to 135 per MWh, compared to a baseline of €50 for coal in a 500MWel plant.

The study shows that the production of heat from wood residues is already outcompeting fossil heating oil. Because straw and forestry residues have a 30% cost advantage over heating oil, this type of bioenergy does not require subsidies by the state (graph, click to enlarge).

In conclusion, in comparison of the production of FT-fuel with heat and electricity production reveals that these alternatives are closer to competitiveness or have already reached competitiveness in Germany.

CO2 offsetting costs
The CO2 mitigation costs (graph, click to enlarge) are lowest when biomass is used directly for the production of heat, in which case they can even be negative (when waste streams and residues are used that would otherwise require disposal costs). When used in efficient combined heat and power plants, they range between a negative cost and around €50 per Mg CO2 equivalent. Co-firing biomass with coal results in a CO2 offsetting cost of around €40.

Carbon prices would have to fetch between €35-140 to make electricity production from gasified biomass a cost-effective CO2 mitigation technology. The wide range depends on the gasification technology.

For biobased FT-fuels the mitigation costs are above €200 per Mg CO2 equivalent. These results suggest not using the CO2 mitigation strategy as a central argument for the promotion of synthetic fuel production from biomass. But because the BtL concept opens up new ways to use biomass as carbon carrier for other chemical purposes, this technological path will be pursued in any case by the KIT.


The proposed BtL technology is already being implemented by the Forschungszentrum Karlsruhe (FZK) and Lurgi AG, who have been testing a fast-pyrolysis pilot plant for the past two years. Both organisations are now building the gasification and liquefaction plant needed to perform the FT-stage of the production. The work is being supported by the Fachagentur Nachwachsende Rohstoffe (Agency for Renewable Materials, of Germany's Ministry of Agriculture, Food and Consumer protection).

The Karlsruhe Instituts für Technologie is a cooperation between the Forschungszentrum Karlsruhe und der Universität Karlsruhe. The study was commissioned by the Ministry for Food and Agriculture of the state of Baden-Württemberg.

Image: the fast-pyrolis plant at the FZK in Karlsruhe. Courtesy: Forschungszentrum Karlsruhe.

References:
L. Leible, S. Kälber, G. Kappler, S. Lange, E. Nieke, P. Proplesch, D. Wintzer und B. Fürniß, "Kraftstoff, Strom und Wärme aus Stroh und Waldrestholz – Eine systemanalytische Untersuchung" [*.pdf], Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Wissenschaftliche Berichte, FZKA 7170, Institut für Technikfolgenabschätzung und Systemanalyse, Forschungszentrum Karlsruhe GmbH, Karlsruhe - [september] 2007

Biopact: German consortium starts production of ultra-clean synthetic biofuels - June 23, 2007

0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home