<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network

    According to Dr Niphon Poapongsakorn, dean of Economics at Thammasat University in Thailand, cassava-based ethanol is competitive when oil is above $40 per barrel. Thailand is the world's largest producer and exporter of cassava for industrial use. Bangkok Post - September 14, 2007.

    German biogas and biodiesel developer BKN BioKraftstoff Nord AG has generated gross proceeds totaling €5.5 million as part of its capital increase from authorized capital. Ad Hoc News - September 13, 2007.

    NewGen Technologies, Inc. announced that it and Titan Global Holdings, Inc. completed a definitive Biofuels Supply Agreement which will become effective upon Titan’s acquisition of Appalachian Oil Company. Given APPCO’s current distribution of over 225 million gallons of fuel products per year, the initial expected ethanol supply to APPCO should exceed 1 million gallons a month. Charlotte dBusinessNews - September 13, 2007.

    Oil prices reach record highs as the U.S. Energy Information Agency releases a report that showed crude oil inventories fell by more than seven million barrels last week. The rise comes despite a decision by the international oil cartel, OPEC, to raise its output quota by 500,000 barrels. Reuters - September 12, 2007.

    OPEC decided today to increase the volume of crude supplied to the market by Member Countries (excluding Angola and Iraq) by 500,000 b/d, effective 1 November 2007. The decision comes after oil reached near record-highs and after Saudi Aramco announced that last year's crude oil production declined by 1.7 percent, while exports declined by 3.1 percent. OPEC - September 11, 2007.

    GreenField Ethanol and Monsanto Canada launch the 'Gro-ethanol' program which invites Ontario's farmers to grow corn seed containing Monsanto traits, specifically for the ethanol market. The corn hybrids eligible for the program include Monsanto traits that produce higher yielding corn for ethanol production. MarketWire - September 11, 2007.

    Ethanol Statistics, a new industry information resource, reports that U.S. petroleum refiners Citgo and Valero are the top 2 ethanol importing companies in the United States in the first 6 months of 2007. Overall imports were up 7.64% compared to the same period in 2006, from 193,620 gallons to 208,404 gallons. Chevron imported 43% less, whereas Noble and ConocoPhilips' imports were up 255% and 372% respectively. Data are reported in 'The United States Ethanol Market 2007’, which also provides a breakdown of U.S. ethanol production costs and a detailed analysis of U.S. consumption and production. Ethanol Statistics - September 10, 2007.

    The government of British Columbia launches a $100,000 study into the production of biogas, heat, power and clean water from household waste streams. Raw sewage water can be cleaned by microbial fuel cells that deliver electricity as they clean the water; other technologies include classic anaerobic fermentation. Canada.com - September 10, 2007.

    Saudi Aramco in its Annual Review 2006 said that last year the company's crude oil production declined by 1.7 percent, while exports declined by 3.1 percent, compared with the previous year. Crude oil production in 2006 averaged 8.9 million barrels of oil a day (b/d) and exports 6.9 million b/d. Saudi Aramco - September 9, 2007.

    Chinese packaging manufacturer Livan Biodegradable Product Co. Ltd. will build plants in Alsozsolca and Edeleny in eastern Hungary at a combined cost of €18 million by 2009, the Hungarian economics ministry says. The plants, which will employ 800 people, are planned to produce initially 50, 000 metric tons a year of environmentally-friendly packaging material, and double that amount by a later date. Livan will use corn to manufacture biodegradable packaging boxes with similar properties to petroleum-based plastic boxes used in the food industry. Dow Jones Newswires - September 7, 2007.

    South Korea aims to raise biodiesel content in domestic diesel to 3 percent from the current 0.5 percent by 2012, Seoul's energy ministry said today. The government was initially set last year to impose a mandatory 5 percent blend, in line with the level targeted by the European Union by 2010, but the country's powerful refining lobby opposed the move, forcing it to push back the target, according to market sources. Reuters - September 7, 2007.

    Virent Energy Systems, Inc. announced today that it has closed a US$21 million second round of venture financing. Investor interest in Virent was driven in large part by the Company’s continued development of its innovative BioForming process beyond its traditional hydrogen and fuel gas applications and toward the production of bio-based gasoline, diesel, and jet fuels. Virent Energy Systems - September 6, 2007.

    The U.S. National Ethanol Vehicle Coalition (NEVC) announces that 31 models of motor vehicles will be offered in the U.S. with an E85 capable engine in 2008. Chrysler, Ford, General Motors, Nissan and Mercedes Benz will all offer flexible fuel vehicles (FFVs) in the coming year. The NEVC expects 750,000 such FFVs will be produced in 2008. National Ethanol Vehicle Coalition - September 5, 2007.

    GreenHunter BioFuels, Inc., has begun commercial operations with the start-up of a 1,500 barrel per day methanol distillation system. Methanol is an alcohol used to transesterify vegetable oils into biodiesel. The methanol production facility is a key element of GreenHunter's 105 million gallon per year biodiesel refinery, the largest in the U.S., slated for initial operations during the first quarter of 2008. PRNewswire - September 5, 2007.

    GreenHunter BioFuels, Inc., has begun commercial operations with the start-up of a 1,500 barrel per day methanol distillation system. Methanol is an alcohol used to transesterify vegetable oils into biodiesel. The methanol production facility is a key element of GreenHunter's 105 million gallon per year biodiesel refinery, the largest in the U.S., slated for initial operations during the first quarter of 2008. PRNewswire - September 5, 2007.

    Spanish renewables group Abengoa released its results for the first half of 2007 financial year in which its consolidated sales were €1,393.6 million, which is a 27.9 percent increase on the previous year. Earnings after tax were €54.9 million, an 18.6 percent increase on the previous year's figure of 46.3 million euro. Abengoa is active in the bioenergy, solar and environmental services sector. Abengoa - September 4, 2007.

    Canadian hydro power developer Run of River Power Inc. has reached an agreement to buy privately owned Western Biomass Power Corp. in a $2.2 million share swap deal that could help finance development of new green sources of electricity in British Columbia. The Canadian Press - September 4, 2007.

    As of Sept. 1, a biodiesel blending mandate has come into force in the Czech Republic, requiring diesel suppliers to mix 2 per cent biodiesel into the fuel. The same rule will be obligatory for gasoline starting next year. In 2009 the biofuel ratio will grow to 3.5 percent in gasoline and 4.5 percent in diesel oil. CBW - September 3, 2007.

    Budapest's first biofuel station opens on Monday near the Pesterzsébet (District XX) Tesco hypermarket. This is the third station selling the E85 fuel containing bioethanol in Hungary, as two other stations are encouraging eco-friendly driving in Bábolna and Győr. Caboodle - September 3, 2007.

    Canadian forest products company Tembec announced that it has completed the acquisition of the assets of Chapleau Cogeneration Limited located in Chapleau, Ontario. The transaction includes a biomass fired boiler and steam turbine with an installed capacity of 7.2 megawatts. Consideration for the assets consists of a series of future annual payments to 2022, with a present value of approximately $1 million. Tembec - September 1, 2007.

    Innovative internet and cable/satellite channel CurrentTV is producing a documentary on Brazil's biofuel revolution. Biopact collegues and friends Marcelo Coelho (EthanolBrasil Blog), Henrique Oliveira (Ethablog) and Marcelo Alioti (E-Machine) provided consulting on the technical, economic, environmental and social aspects of Brazil's energy transformation. ProCana - August 31, 2007.

    Oil major BP Plc and Associated British Foods Plc won competition clearance from the European Commission on to build a plant to make transport fuel from wheat in Hull, northeast England. U.S. chemical company DuPont is also involved. Reuters UK - August 31, 2007.

    The government of the Indian state of Orissa announced its policy for biofuel production which includes a slew of incentives as well as measures to promote the establishment of energy plantations. The state aims to bring 600,000 hectares of barren and fallow land under Jatropha and Karanj. At least 2 million hectares degraded land are available in the State. The new policy's other objectives are to provide a platform for investors and entrepreneurs, market linkages and quality control measures. Newindpress - August 29, 2007.

    Brazil's state-run oil company Petrobras said today it expects to reach large scale cellulosic ethanol production in 2015, with the first plant entering operations as early as 2011. Lignocellulosic biomass is the most abundant biological material on the planet, making up the bulk of the structure of wood and plants. In a first phase, Petrobras intends to use bagasse as a feedstock. Reuters / MacauHub- August 29, 2007.

    Seattle based Propel Biofuels, is announcing a $4.75 million first round of capital from @Ventures and Nth Power. The money will be used to help Propel set up and manage biodiesel fueling stations. BusinessWire - August 29, 2007.

    BioEnergy International, a science and technology company committed to developing biorefineries to produce fuels and specialty chemicals from renewable resources, announced today the closing of a major US$61.6 million investment that will provide funding for the Company’s three strategic initiatives: generating secure cash flow from its conventional ethanol platform, product diversification through the introduction of novel biocatalysts for the manufacture of green chemicals and biopolymers and the integration of its cellulose technology. BusinessWire - August 28, 2007.

    German company Verbio Vereinigte BioEnergie, the biggest biofuels producer in Europe, says it is considering plans to invest up to €100/US$136.5 million in a biofuel production facility in Bulgaria. The company wants the new facility to be located close to a port and Bulgaria's city of Varna on the Black Sea is one of the options under consideration. If Verbio goes through with the plan, it would produce both biodiesel and bioethanol, making Bulgaria a major source of biofuels in southeastern Europe. Verbi currently produces around 700,000 tonnes of biofuels per year. Sofia News Agency - August 27, 2007.

    Czech brown-coal-fired power plant Elektrárna Tisová (ETI), a unit of the energy producer ČEZ, could co-fire up to 40,000 tons of biomass this year, the biggest amount in the company’s history, said Martin Sobotka, ČEZ spokesman for West Bohemia. ETI burned more than 19,000 tons of biomass in the first half of 2007. The company’s plan reckoned with biomass consumption of up to 35,000 tons a year. Czech Business Weekly - August 27, 2007.

Creative Commons License

Sunday, September 16, 2007

Georgia Tech's Strategic Energy Institute focuses on biofuels and biomaterials from forest products

Fuel prices are at record highs, a situation with disastrous consequences for poor countries. Biofuels are seen as a way to counter this trend, but only a handful of countries currently succeeds in making fuels that are competitive with oil products. However, scientists across the world are focusing on developing technologies and processes that should make it possible to tap abundant sources of biomass and bring down production costs. Efficient bioconversion techniques can be shared with the South, so that it can overcome the catastrophic social and economic effects of high oil prices.

Researchers at Georgia Tech are very active in the sector and are focusing on converting cellulose-rich forest products into biofuels, in an integrated biorefinery that yields high value bio-based materials besides fuels. They understand that many energy issues require a multi-disciplinary approach, which is why this university launched the Strategic Energy Institute (SEI), created to enable, facilitate and coordinate programs related to energy research and education. Their research efforts are interdisciplinary and take an integrated systems approach.

The Strategic Energy Institute has been broadly engaging companies to define projects that many faculty members at Georgia Tech can pursue in a collaborative effort. One of the main projects aimed at advanced technologies to make transportation fuels from forest-based biomass is made possible with funding from Chevron, Atlanta startup C2 Biofuels, the Georgia Research Alliance and one of the U.S. Department of Energy’s new BioEnergy Science Centers.

The Georgia Tech researchers are examining and optimizing the five major steps required to produce bioethanol from woody biomass. These steps include (1) selecting the best plant material, (2) preparing the plants for conversion, (3) breaking down the carbohydrates into simple sugars, (4) fermenting the sugars into alcohol and (5) separating the ethanol from water. Let's have a quick look at their advancements.

1. Selecting a biomass source
Bioethanol produced from corn is being manufactured at a rate of more than 5 billion gallons per year in the United States, but concerns exist about the future price and availability of corn as a food crop if it’s being used to help meet energy needs.

Because forest products are a more efficient source of ethanol and more than 5 million tons of trees are available for harvest each year in Georgia beyond what is needed for pulp mill and sawmill production, Georgia Tech researchers are turning to Southern pine trees. Switchgrass, a fast-growing tallgrass, is another attractive source of plant material because of its ability to grow in poor soil and adverse climate conditions, its rapid growth and its low fertilization and herbicide requirements:
:: :: :: :: :: :: :: :: :: ::

Art Ragauskas, a professor in the School of Chemistry and Biochemistry, studies the chemistry and structure of the starting plant material to determine which varieties and characteristics of switchgrass and pine trees improve conversion to ethanol:

2. Pre-treatment

Ragauskas also examines how different acids react with the wood chips to make accessible the complex interior mixture of carbohydrate polymers, including cellulose, hemicellulose and lignin.

Pre-treatment is performed under severe chemical conditions and very high temperatures. Understanding the chemistry should allow the researchers to make pre-treatments more efficient, less costly and more effective, says Ragauskas.

After the acid pre-treatment, the wood is placed in a reactor and exposed to high-pressure steam.

John Muzzy, a professor in the School of Chemical and Biomolecular Engineering, and Kristina Knutson, a postdoctoral fellow in the School of Chemistry and Biochemistry, are working with Ragauskas to develop a continuous reactor that will employ mechanical energy and/or boiling water instead of acid and high temperatures to break up the wood. That would greatly reduce processing and chemical costs while increasing the life expectancy of the reactors, Ragauskas notes.

3. Breaking down the sugars
After the pre-treatment, the cellulose and hemicellulose are further broken down to free the sugar for fermentation to alcohol. Commercially available enzymes can do this, but they are too expensive to use in biofuel production, according to Andreas Bommarius, a professor in the School of Chemical and Biomolecular Engineering and the School of Chemistry and Biochemistry. As an alternative, he is identifying novel enzymes and engineering them to be longer-lasting and more effective at breaking down cellulose polymers to sugars than those commercially available.

Bommarius and his team wants to produce enzymes more efficiently and make them more active and stable, at the same time improving bioethanol production at a lower cost.

4. Fermentation

In conventional ethanol production, the sugars obtained are then fermented with yeast to produce alcohol. Rachel Ruizhen Chen, an associate professor in the School of Chemical and Biomolecular Engineering, is working to increase the ethanol production rate by using the bacteria Zymomonas mobilis instead of yeast in the fermentation process because it has a three- to five-fold higher productivity than yeast when making bioethanol. Chen plans to manipulate the enzymatic, transport and regulatory functions of the bacterial cell to improve the bioethanol fermentation process.

The lignin portion of the biomass must be extracted from the mixture prior to fermentation. Unfortunately, current pre-treatments break down some of the lignin, which enables it to be carried over to the fermentation process where it acts as a fermentation inhibitor.

William Koros, the Roberto C. Goizueta Chair in the School of Chemical and Biomolecular Engineering, is investigating efficient ways to separate the lignin from the cellulose and hemicellulose portions of the biomass. Koros, a Georgia Research Alliance (GRA) eminent scholar in membranes, plans to extract the lignin byproducts by pulling the hydrolyzed biomass mixture through a selective membrane with a vacuum using a process called pervaporation.

Lignin is an important by-product of the enzymatic process and has many potential uses. Ragauskas is examining the possibility of converting lignin to a biofuel precursor or using lignin as a building block chemical to make new polymers or chemicals. Professors Christopher Jones and Pradeep Agrawal, both of the School of Chemical and Biomolecular Engineering, are exploring ways to chemically fractionate pine and convert suitable portions to true gasoline fuels.

To produce a biofuel with a similar energy density to gasoline from renewable feedstocks, they plan to convert pre-treated pine to fuel using chemical catalysts traditionally used by the petroleum industry, rather than enzymes. These biofuels could yield higher miles-per-gallon than traditional ethanol-rich fuels such as E-85, according to Jones.

5. Separating ethanol from water
For bioethanol, once the sugars are fermented into alcohol, a significant amount of water must be separated out. This separation primarily occurs in a distillation column, which involves heating the mixture and separating the components by the differences in their boiling points.

Distillation is very energy intensive and expensive, and it might defeat the purpose when you’re trying to produce biofuel economically, says Sankar Nair, an assistant professor in the School of Chemical and Biomolecular Engineering, who is collaborating with Koros on two separation projects aimed at improving the energy efficiency of the biofuel process.

A membrane-based approach would avoid the need to supply heat energy, and instead rely on differences in the transport rates of the components through a membrane to achieve separation. The challenge is in producing selective membrane systems that can produce pure ethanol. Polymer materials have been widely investigated and have the advantage of high throughput, but such membranes can’t yet produce pure ethanol from a dilute ethanol-water mixture, notes Nair.

Instead, Koros and Nair are exploring membranes that contain nanoparticles of porous inorganic materials called zeolites that are so small they can be dispersed efficiently into a polymer matrix. The very specific porosity of the zeolite should allow separation of ethanol from water. By using two membranes in series – the first hydrophobic to remove ethanol from a large mass of water and the second hydrophilic to remove any trace water in the ethanol product from the first membrane – it may be possible to design an economical membrane process for biofuel separation from water.

Taking a systems approach: the biorefinery

Producing ethanol from biomass involves more than these process steps. Researchers must also decide how to ship the biomass to the processing plant, how large the processing plant should be, where it should be located, and how to ship the ethanol to fueling stations.

Bill Bulpitt, an SEI senior research engineer who returned to Georgia Tech in 2004 after working 17 years for Southern Company, is working with students who are running computer simulation models that represent what a full-scale production plant might look like. The models analyze the costs for the various components of the system, which helps to determine the optimal biorefinery size.

When building a biorefinery, there is a certain size that’s economically viable. That’s what we are trying to determine, Bulpitt explains.

To evaluate a biofuel system, the project team must consider the energy balance – that is, how much energy goes in versus how much comes out. A biofuel system must take into account positive or negative energy balances, positive or negative net greenhouse gas emissions, and positive or negative environmental and ecosystem impacts.

Ethanol biorefineries could get a significant economic boost from the sale of high-value chemicals that could be generated from the same feedstock. Charles Eckert, a professor in the School of Chemical and Biomolecular Engineering and collaborators Charles Liotta and Art Ragauskas are exploring the use of environmentally friendly solvent and separation systems to produce specialty chemicals, pharmaceutical precursors and flavorings from a small portion of the ethanol feedstock.

Matthew Realff , an associate professor in the School of Chemical and Biomolecular Engineering, is developing optimization models to determine the best structure for a biofuel processing system. Realff ’s model integrates information from crop production through processing to fuel distribution. It includes information on the location and number of crop acres available, the current economic value of the crop, distances and ability to ship the crop, the economic scaling of the cost of the processing equipment with size and the location of the distribution terminals.

These optimization models are valuable to companies like C2 Biofuels that plan to build biorefineries. And they complete the comprehensive research approach Georgia Tech has taken toward optimizing bioethanol production process.

Picture: Professor Art Ragauskas prepares samples containing cellulose, lignin and hemicellulose for analysis. Credit: Georgia Tech, Gary Meek.

Georgia Tech: Georgia Tech Takes Comprehensive Biofuels Approach - September 16, 2007.

Strategic Energy Institute: Georgia Tech Part of New Biofuel Research Center - June 29, 2007.


Post a Comment

Links to this post:

Create a Link

<< Home