<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network

    According to Tarja Halonen, the Finnish president, one third of the value of all of Finland's exports consists of environmentally friendly technologies. Finland has invested in climate and energy technologies, particularly in combined heat and power production from biomass, bioenergy and wind power, the president said at the UN secretary-general's high-level event on climate change. Newroom Finland - September 25, 2007.

    Spanish engineering and energy company Abengoa says it had suspended bioethanol production at the biggest of its three Spanish plants because it was unprofitable. It cited high grain prices and uncertainty about the national market for ethanol. Earlier this year, the plant, located in Salamanca, ceased production for similar reasons. To Biopact this is yet another indication that biofuel production in the EU/US does not make sense and must be relocated to the Global South, where the biofuel can be produced competitively and sustainably, without relying on food crops. Reuters - September 24, 2007.

    The Midlands Consortium, comprised of the universities of Birmingham, Loughborough and Nottingham, is chosen to host Britain's new Energy Technologies Institute, a £1 billion national organisation which will aim to develop cleaner energies. University of Nottingham - September 21, 2007.

    The EGGER group, one of the leading European manufacturers of chipboard, MDF and OSB boards has begun work on installing a 50MW biomass boiler for its production site in Rion. The new furnace will recycle 60,000 tonnes of offcuts to be used in the new combined heat and power (CHP) station as an ecological fuel. The facility will reduce consumption of natural gas by 75%. IHB Network - September 21, 2007.

    Analysts fear that record oil prices will fuel general inflation in Kenya, particularly hitting the poorest hard. They call for the development of new policies and strategies to cope with sustained high oil prices. Such policies include alternative fuels like biofuels, conservation measures, and more investments in oil and gas exploration. The poor in Kenya are hit hardest by the sharp increase, because they spend most of their budget on fuel and transport. Furthermore, in oil intensive economies like Kenya, high oil prices push up prices for food and most other basic goods. All Africa - September 20, 2007.

    Finland's Metso Power has won an order to supply Kalmar Energi Värme AB with a biomass-fired power boiler for the company’s new combined heat and power plant in Kalmar on the east coast of Sweden. Start-up for the plant is scheduled for the end of 2009. The value of the order is approximately EUR 55 million. The power boiler (90 MWth) will utilize bubbling fluidized bed technology and will burn biomass replacing old district heating boilers and reducing the consumption of oil. The delivery will also include a flue gas condensing system to increase plant's district heat production. Metso Corporation - September 19, 2007.

    Jo-Carroll Energy announced today its plan to build an 80 megawatt, biomass-fueled, renewable energy center in Illinois. The US$ 140 million plant will be fueled by various types of renewable biomass, such as clean waste wood, corn stover and switchgrass. Jo-Carroll Energy - September 18, 2007.

    Beihai Gofar Marine Biological Industry Co Ltd, in China's southern region of Guangxi, plans to build a 100,000 tonne-per-year fuel ethanol plant using cassava as feedstock. The Shanghai-listed company plans to raise about 560 million yuan ($74.5 million) in a share placement to finance the project and boost its cash flow. Reuters - September 18, 2007.

    The oil-dependent island state of Fiji has requested US company Avalor Capital, LLC, to invest in biodiesel and ethanol. The Fiji government has urged the company to move its $250million 'Fiji Biofuels Project' forward at the earliest possible date. Fiji Live - September 18, 2007.

    The Bowen Group, one of Ireland's biggest construction groups has announced a strategic move into the biomass energy sector. It is planning a €25 million investment over the next five years to fund up to 100 projects that will create electricity from biomass. Its ambition is to install up to 135 megawatts of biomass-fuelled heat from local forestry sources, which is equal to 50 million litres or about €25m worth of imported oil. Irish Examiner - September 16, 2007.

    According to Dr Niphon Poapongsakorn, dean of Economics at Thammasat University in Thailand, cassava-based ethanol is competitive when oil is above $40 per barrel. Thailand is the world's largest producer and exporter of cassava for industrial use. Bangkok Post - September 14, 2007.

    German biogas and biodiesel developer BKN BioKraftstoff Nord AG has generated gross proceeds totaling €5.5 million as part of its capital increase from authorized capital. Ad Hoc News - September 13, 2007.

    NewGen Technologies, Inc. announced that it and Titan Global Holdings, Inc. completed a definitive Biofuels Supply Agreement which will become effective upon Titan’s acquisition of Appalachian Oil Company. Given APPCO’s current distribution of over 225 million gallons of fuel products per year, the initial expected ethanol supply to APPCO should exceed 1 million gallons a month. Charlotte dBusinessNews - September 13, 2007.

    Oil prices reach record highs as the U.S. Energy Information Agency releases a report that showed crude oil inventories fell by more than seven million barrels last week. The rise comes despite a decision by the international oil cartel, OPEC, to raise its output quota by 500,000 barrels. Reuters - September 12, 2007.

    OPEC decided today to increase the volume of crude supplied to the market by Member Countries (excluding Angola and Iraq) by 500,000 b/d, effective 1 November 2007. The decision comes after oil reached near record-highs and after Saudi Aramco announced that last year's crude oil production declined by 1.7 percent, while exports declined by 3.1 percent. OPEC - September 11, 2007.

    GreenField Ethanol and Monsanto Canada launch the 'Gro-ethanol' program which invites Ontario's farmers to grow corn seed containing Monsanto traits, specifically for the ethanol market. The corn hybrids eligible for the program include Monsanto traits that produce higher yielding corn for ethanol production. MarketWire - September 11, 2007.

Creative Commons License

Tuesday, September 25, 2007

European project looks at nanotechnology to develop CO2 capturing membranes

A new European project called 'Nanomembranes against Global Warming' (NanoGLOWA) is attempting to find a new way of capturing CO2 emissions from power plants with the help of nanotechnology. Nanostructured membranes could reduce carbon capture's energy consumption and costs, making it more attractive than current technology (earlier post). The €12 million NanoGLOWA project receives the bulk of its funding from the European Commission, and unites 26 organisations from 14 EU member states.

Europe produces one gigaton of carbon dioxide annually and wafts it into the atmosphere. Around one-third of this stems from fossil-fuelled power plants. Carbon capture and storage (CCS) could reduce those emissions by up to 90%. The idea is to store the carbon thus captured underground in, for example, empty gas fields and aquifers.

Biopact follows developments in CCS technology because it allows for the creation of radically carbon-negative bioenergy and biofuels (more here, here and here, and references in these texts).

Existing carbon capture methods include absorption and non-selective cooling. During the absorption process, flue gasses - mainly consisting of nitrogen, water, dust particles and, of course, CO2 - flow through several baths in which the carbon dioxide is bound with amines. However, this 'scrubbing' technology is far from being energy- or cost-effective, as it can consume up to 25% of the energy actually produced, and large installations as well as chemicals are needed, says the NanoGLOWA team.

CO2 separation through membranes, on the other hand, would consume only up to 8% of the energy produced, and bring down installation costs. However, suitable membranes must first be developed (interesting flash presentation of current production methods).

The NanoGLOWA project is comprehensive in scope. It will develop, produce, and integrate nano-engineered membranes in power plants and test their carbon capturing effectiveness (project overview, schematic, click to enlarge).

Currently, the following five types of nanomembranes are simultaneously being designed in the framework of the project:
:: :: :: :: :: :: :: :: :: ::
  • polymer membranes: diffusion transport membranes, block copolymers; fixed-site carrier-type membranes, cellulose acetate or polyamides; ionomeric high voltage membranes, electrically modified materials;
  • carbon membranes: carbon molecular sieve membranes;
  • ceramic membranes
While polymeric membranes are cheap, they seem to dilate when brought into contact with CO2 at higher pressure, so that selectivity and hence efficacy may be significantly reduced. Carbon membranes, on the other hand, are well developed and have good selectivity, says the NanoGLOWA team, but they may be contaminated by the power station's flue gasses.

Finally, ceramic membranes are very stable and have great longevity as they respond well to extreme conditions such as high temperatures. After development in academic laboratories, the membranes will be tested in pilot power plants in the fifth and final year of the project (2011).

Membrane processes are characterized by the fact that a feed stream is divided into two streams, which are called the retentate stream and the permeate stream. Either of these streams can be the ‘product’ of the process. The membrane itself is the central part of every process and can be seen as a filter between two phases. The actual separation is achieved because transport of one component through the membrane is faster than the other component(s).

The actual performance of a membrane is determined by two different factors, namely its permeability and selectivity. The permeability is defined as the volume of gas flowing through the membrane per unit of area and time. The selectivity, also known as the separation factor, is determined by the difference in permeability of the components of interest. If, for instance, the permeability of component A is three times higher than component B, the permeate stream contains three times more of component A and the selectivity from A over B is 3.

The permeability of gases and therefore selectivity between different gasses depends strongly on the gas and type of material used for the membrane. Membranes can be constructed from different starting materials. The two main classes in membrane science are organic membranes (e.g. plastics, carbon) and inorganic membranes (ceramics). Both classes of material are subject of investigation in NanoGLOWA.

The NanoGLOWA project unites 26 organisations, including six universities and five power plant operators, as well as industry and small and medium-sized enterprises (SMEs) from 14 European countries. The project receives €7 million in funding from the European Commission under the Sixth Framework Programme. Total costs amount to €12.5 million.

Cordis: Nanotechnology could help bring down costs of CO2 capture - September 25, 2007.

NanoGLOWA: How membranes are made - flash animation.

Biopact: New plastic-based, nano-engineered CO2 capturing membrane developed - September 19, 2007


Post a Comment

Links to this post:

Create a Link

<< Home