Biohydrogen fuel cells to bring water, energy and telecoms to remote communities in Indonesia
The Indonesian government says it will launch a pilot 'Community Integrated Utility Program' (CIUP) to provide power, potable water and telecommunications for people living in disadvantaged and remote regions across the vast archipelago. The systems are based on stationary fuel cells that will be powered by locally produced biohydrogen. Ethanol production would be integrated into the concept.
This is a prototypical example of how developing regions can 'leapfrog' into a clean and sustainable future by utilizing the latest technologies. The project would be a world's first in that it would rely on implementing high-tech power systems in a decentralised manner in impoverished communities. What is more, income generated from the sale of products obtained from the sysem (potable water, energy, ethanol) is estimated be sufficient to finance the project.
State Minister for Accelerated Development of Disadvantaged Regions M. Lukman Edy said the government would select several regions as pilot projects before rolling out the program across the country. The same ministry earlier implemented a strategy to bring wireless 3G communications to remote areas (more here).
The CIUP could be an alternative solution to the absence of power and telecommunications facilities in disadvantaged regions, Lukman said. He added the project will be initially funded by private local and foreign enterprises, and would use technology developed in Europe and China.
CIUP senior adviser professor Reginald Theijs said the project would utilize biomass conversion of forest and agricultural waste into ethanol and hydrogen to produce power. Biohydrogen can be made from the fermentation of carbohydrate fractions of biomass by thermophilic and photoheterotrophic microorganisms or by the gasification of lignocellulosic biomass (overview). It is not clear whether ethanol production would be directly integrated into the proposed system, but technically it would be possible.
Under the plan, local communities consisting of approximately 800 families will form cooperatives to run the production system and provide power, water and telecommunications, in cooperation with private or state-owned banks. Communities, through local banks, will receive special loans to purchase all the necessary technologies, provided by special agents.
energy :: sustainability :: biomass :: bioenergy :: biofuels :: ethanol ::biohydrogen :: fuel cell :: decentralisation :: Indonesia ::
The ethanol produced by the biomass converter will also be sold. Combined with the potable water and communication services, the ethanol will generate sufficient income to repay the capital cost in less than three years.
Deputy minister for cooperatives and small and medium enterprises, Tatag Wiranto, said the initial stage of the CIUP would take place at the end of 2008 in remote areas of Sabang in Aceh, Rokan Hulu in Riau, Bitung in North Sulawesi, Nabire in West Papua and Merauke in Papua.
The CIUP project will be carried out over 10 years with some 6 million families who will get free electricity and potable water from this project.
The technology is environmentally friendly because it produces zero carbon dioxide emissions and utilizes biomass, which does not pollute the environmen, professor Theijs said.
Picture: fuel cells for stationary power applications can be compact and are suitable for off-grid, remote locations. Pictured is a 300 kW fuel cell that works on biogas (reformed into hydrogen) from FuelCell Energy.
References:
Jakarta Post: Utility program to reach remote regions - August 18, 2007.
This is a prototypical example of how developing regions can 'leapfrog' into a clean and sustainable future by utilizing the latest technologies. The project would be a world's first in that it would rely on implementing high-tech power systems in a decentralised manner in impoverished communities. What is more, income generated from the sale of products obtained from the sysem (potable water, energy, ethanol) is estimated be sufficient to finance the project.
State Minister for Accelerated Development of Disadvantaged Regions M. Lukman Edy said the government would select several regions as pilot projects before rolling out the program across the country. The same ministry earlier implemented a strategy to bring wireless 3G communications to remote areas (more here).
The CIUP could be an alternative solution to the absence of power and telecommunications facilities in disadvantaged regions, Lukman said. He added the project will be initially funded by private local and foreign enterprises, and would use technology developed in Europe and China.
CIUP senior adviser professor Reginald Theijs said the project would utilize biomass conversion of forest and agricultural waste into ethanol and hydrogen to produce power. Biohydrogen can be made from the fermentation of carbohydrate fractions of biomass by thermophilic and photoheterotrophic microorganisms or by the gasification of lignocellulosic biomass (overview). It is not clear whether ethanol production would be directly integrated into the proposed system, but technically it would be possible.
Under the plan, local communities consisting of approximately 800 families will form cooperatives to run the production system and provide power, water and telecommunications, in cooperation with private or state-owned banks. Communities, through local banks, will receive special loans to purchase all the necessary technologies, provided by special agents.
The hydrogen will be distributed, free of charge, to local residents and with hydrogen fuel cells, also provided free of charge, will be converted into electricity, and thereby will create a developed power system to areas which currently have not been reached by power networks. This system will provide sufficient electricity to run a full range of household equipment and telecommunication systems. - Professor Reginald Theijs, adviser Community Integrated Utility ProgramThe system would provide sufficient energy for each household to run a small reverse osmosis system to produce some 600 liters of potable water per day, of which each household will retain 100 liters and the remaining 500 liters will go to a central depot for sale:
energy :: sustainability :: biomass :: bioenergy :: biofuels :: ethanol ::biohydrogen :: fuel cell :: decentralisation :: Indonesia ::
The ethanol produced by the biomass converter will also be sold. Combined with the potable water and communication services, the ethanol will generate sufficient income to repay the capital cost in less than three years.
Deputy minister for cooperatives and small and medium enterprises, Tatag Wiranto, said the initial stage of the CIUP would take place at the end of 2008 in remote areas of Sabang in Aceh, Rokan Hulu in Riau, Bitung in North Sulawesi, Nabire in West Papua and Merauke in Papua.
The CIUP project will be carried out over 10 years with some 6 million families who will get free electricity and potable water from this project.
The technology is environmentally friendly because it produces zero carbon dioxide emissions and utilizes biomass, which does not pollute the environmen, professor Theijs said.
Picture: fuel cells for stationary power applications can be compact and are suitable for off-grid, remote locations. Pictured is a 300 kW fuel cell that works on biogas (reformed into hydrogen) from FuelCell Energy.
References:
Jakarta Post: Utility program to reach remote regions - August 18, 2007.
0 Comments:
Post a Comment
Links to this post:
Create a Link
<< Home