<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    AlgoDyne Ethanol Energy Inc. confirms that its retail partner, Canadian Green Fuels, has entered into an agreement with Cansource BioFuels to open a new biodiesel production facility in Mayerthorpe Alberta. The deal will see the construction and development of a community based, integrated crushing and biodiesel facility to process 10 million litres of ASTM certified canola based biodiesel which will be scaled up to produce 40million litres by 2010. BusinessWire - July 23, 2007.

    The Center for Management Technology announces the second Biomass-to-Liquids Technology conference will take place in Vienna this year, from 12 to 13 September. The current state of BTL-technologies will be presented and discussed. Biomass-to-Liquids conversion pathways are seen by many as promising avenues into the world of second generation biofuels that relies on the use of a broad variety of possible biomass feedstocks. CMT - July 23, 2007.

    Gulf Ethanol Corporation, a Houston-based energy company, announced today that it has initiated negotiations with representatives of government and industry in Uruguay. Discussions, coordinated by the U.S. Department of Commerce, centered on the synergy between Gulf Ethanol's interest in exploiting the potential of sorghum as a non-food fuel stock for ethanol production and the ideal conditions for growing the crop in Uruguay. The company criticizes the use of food crops like corn for ethanol in the U.S. and is seeking alternatives. Yahoo Press Release - July 20, 2007.

    Dutch company Capella Capital N.V. announces its investment in BiogasPark N.V. and acquires a 20 % stake upon the foundation of the company. The remaining shares are held by the management and strategic investors. BiogasPark N.V. will invest in the field of renewable energy and primarily focuses on financing, purchasing and the maintenance of biogas plant facilities. Ad Hoc News - July 20, 2007.

    Bioenergy company Mascoma Corp. is to build the world's first commercial scale cellulosic ethanol plant in Michigan where it will collaborate with Michigan State University. The $100 million plant will rely on the biochemical, enzymatic process that breaks down biomass to convert it to sugars. One of the factors that attracted Mascoma to Michigan was the recent $50 million federal grant MSU received to study biofuels in June. MSU will help in areas such as pretreatment technology for cellulosic ethanol production and energy crops that can be utilized by the plant. The State News - July 20, 2007.

    PetroChina, one of China's biggest oil companies, aims to invest RMB 300 million (€28.7/US$39.6m) in biofuel production development plans. A special fund is also going to be jointly set up by PetroChina and the Ministry of Forestry to reduce carbon emissions. Two thirds of the total investment will be channeled into forestry and biofuel projects in the provinces of Sichuan, Yunnan and Hebei, the remainder goes to creating a China Green Carbon Foundation, jointly managed by PetroChina and the State Forestry Administration. China Knowledge - July 19, 2007.

    Netherlands-based oil, gas, power and chemical industries service group Bateman Litwin N.V. announces it has signed an agreement to acquire Delta-T Corporation, a leading US-based bioethanol technology provider, with a fast growing engineering, procurement and construction division for a total consideration of US$45 million in cash and 11.8 million new ordinary shares in Bateman Litwin. Bateman Litwin - July 18, 2007.

    TexCom, Inc. announced today that it has signed a letter of intent to acquire Biodiesel International Corp. (BIC), and is developing a plan to build an integrated oilseed crushing and biodiesel production facility in Paraguay. The facility, as it is currently contemplated, would process 2,000 metric tons of oil seeds per day, yielding approximately 136,000 metric tons (approximately 39 Million Gallons) of biodiesel and 560,000 metric tons of soy meal pellets per year. Initial feedstock will consist mainly of soybeans that are grown in the immediate area of the proposed production plant in the Provinces of Itapua and Alto Parana. MarketWire - July 18, 2007.

    Spanish power company Elecnor announced that it will build Spain's biggest biodiesel production plant for €70 million (US$96.48 million). The plant, in the port of Gijon in northern Spain, will be ready in 22 months and will produce up to 500,000 tonnes of biodiesel a year from vegetable oil. The plant will be one of the world's biggest. Spain has decided to impose mandatory blending of biofuels with conventional fossil fuels as part of European Union efforts to curb greenhouse gas emissions. Elecnor [*Spanish] - July 18, 2007.

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a feasibility study to determine the most economical solutions to provide biomass energy to the isolated Chugachmiut Tribal Community in the village of Port Graham, Alaska, located on the Kenai Peninsula about 180 miles southwest of Anchorage. The village is only accessible by air or water, making traditional fossil fuel sources expensive to deliver and alternative forms of energy difficult to implement. The case study based on decentralised bioenergy offers interesting parallels to what would be needed to provide energy to the developing world's huge population that lives in similarly isolated conditions. EERC - July 18, 2007.

    According to a basic market report by Global Industries Inc., world biodiesel sales are expected to exceed 4.7 billion gallons (17.8 billion liters) by 2010. Though Europe, with a share estimated at 84.16% in 2006, constitutes the largest market, and will continue to do so for the coming years, major growth is expected to emanate from the United States. The automobile applications market for biodiesel, with an estimated share of 55.73% in 2006 constitutes the largest as well as the fastest growing end use application. Other applications independently analyzed include the Mining Applications market and the Marine Applications market. PRWeb - July 18, 2007.

    O2Diesel Corporation announced that it has received the regulatory approvals necessary to start delivering its proprietary diesel ethanol blended fuel, O2Diesel, in the French market. The approvals pave the way for O2Diesel to move forward into the next stage of its European market development strategy by commencing deliveries to a number of targeted fleets in France. MarketWire - July 17, 2007.

    The BBC World Service is hosting a series of programmes on the global obesity pandemic. Over the coming two weeks a range of documentaries and discussions will be held on the obesity time-bomb that is growing all over the West, but also in the developing world. In North America, a quarter of people are now morbidly obese, 60% is overweight, and one in three children will become obese. The epidemic is spreading rapidly to China and India. BBC World Service - July 16, 2007.

    A new report from Oregon State University shows the biofuels industry is on track to be a $2.5 billion chunk of the state's economy within 20 years. The study identifies 80 potential biodiesel, ethanol and biomass facilities which could produce a combined 400 million gallons (1.5 billion liters) per year of ethanol and another 315 million gallons (1.2 billion liters) of biodiesel. On an oil equivalent basis, this comes down to around 38,000 barrels per day. Oregon State University - July 16, 2007.

    Jatropha biodiesel manufacturer D1 Oils has appointed a leading plant scientist to its board of directors. Professor Christopher Leaver, Sibthorpian professor of plant science and head of the plant sciences department at Oxford University, has joined the Teesside company as a non-executive director. Professor Leaver, who was awarded a CBE in 2000, is a leading expert in the molecular and biochemical basis of plant growth and differentiation. D1Oils Plc - July 16, 2007.

    Panama and South Africa are set to cooperate on biofuels. A delegation consisting of vice-minister of Foreign Affairs Azis Pahad, of Finance, Jubulai Moreketi and of Finance, met with Panama's vice-chancellor Ricardo Durán to discuss joint biodiesel and ethanol production and distribution. Panama's goal is to become a hub for internationally traded bioenergy, making use of the strategic position of the Canal. La Prensa Gráfica [*Spanish] - July 14, 2007.

    Spanish investors are studying the opportunity to invest in agro-industrial projects in Morocco aimed at producing biofuel from the Jatropha plant. Morocco’s Minister for Energy and Mines, Mohammed Boutaleb, said Moroccan authorities are willing to provide the necessary land available to them, provided that the land is not agricultural, is located in semi-arid regions, and that the investors agree to use water-saving agricultural techniques, such as drip-feed irrigation. Magharebia - July 14, 2007.

    Philippine Basic Petroleum Corp. plans to raise as much as 2.8 billion pesos (€44.4/US$61.2 million) through a follow-on offering and loans to finance a 200,000 liter per day bio-ethanol plant in the province of Zamboanga del Norte. The move into biofuels comes in anticipation of the implementation of RA 9367 or the Philippines biofuels law. RA 9367 mandates five percent bioethanol blending into gasoline by 2009, and 10 percent by 2011. Manila Bulletin - July 14, 2007.

    The Michigan Economic Development Corporation last week awarded a $3.4 million grant to redevelop the former Pfizer research facility in Holland into a bioeconomy research and commercialization center. Michigan State University will use the facility to develop technologies that derive alternative energy from agri-based renewable resources. Michigan.org - July 13, 2007.

    Fuel prices increased three times in Mozambique this year due to high import costs. For this reason, the country is looking into biofuels as an alternative. Mozambique's ministries of agriculture and energy presented a study showing that more than five million hectares of land can be used sustainably in the production of crops that would produce biodiesel fuels. The first phase of a biofuel implementation plan was also presented, identifying the provinces of Inhambane, Zambezia, Nampula and Cabo Delgado as the first to benefit. News24 (Capetown) - July 12, 2007.

    The Malaysian Oleochemical Manufacturers Group (MOMG) has urged the government for incentives and grants to companies to encourage the development of new uses and applications for glycerine, the most important byproduct of biodiesel. Global production of glycerine is currently about one million tonnes. For every 10 tonnes of oil processed into biodiesel, one tonne of glycerine emerges as a by-product. Bernama - July 12, 2007.

    BioDiesel International AG has acquired 70 per cent of the shares in Lignosol, a Salzburg based company that is making promising progress in Biomass-to-Liquids conversion techniques. The purchase price is in the single-digit million Euro range. ACN - July 10, 2007.

    Gay & Robinson Inc. and Pacific West Energy LLC announced today a partnership to develop an ethanol plant in Hawaii based on sugarcane feedstocks. The plant's capacity is around 12 million gallons (45 million liters) per year. The partnership called Gay & Robinson Ag-Energy LLC, will also ensure the continuation of the Gay & Robinson agricultural enterprise, one of the oldest in Hawaii. Approximately 230 jobs will be preserved, and a large area of West Kauai will be maintained in sustainable agriculture. Business Wire - July 10, 2007.

    Water for Asian Cities (WAC), part of UN-Habitat, is extending partial financial support for the construction of several biogas plants across the Kathmandu valley and develop them as models for municipal waste management. The first biogas plants will be built in Khokna, Godavari, Kalimati, Patan, Tribhuvan University premises, Amrit Science College premises and Thimi. The Himalayan Times - July 09, 2007.

    EnviTec Biogas's planned initial public offering has roused 'enormous' interest among investors and the shares have been oversubscribed, according to sources. EnviTec has set the IPO price range at €42-52 a share, with the subscription period running until Wednesday. EnviTec last year generated sales of €100.7 million, with earnings before interest and tax of €18.5 million. Forbes - July 09, 2007.

    AthenaWeb, the EU's science media portal, is online with new functionalities and expanded video libraries. Check it out for video summaries of the latest European research activities in the fields of energy, the environment, renewables, biotech and much more. AthenaWeb - July 04, 2007.

    Biopact was invited to attend a European Union high-level meeting on international biofuels trade, to take place on Thursday and Friday in Brussels. Leaders from China, India, Africa and Brazil will discuss the opportunities and challenges arising in the emerging global biofuels sector. EU Commissioners for external relations, trade, energy, development & humanitarian aid as well as the directors of international organisations like the IEA, the FAO and the IFPRI will be present. Civil society and environmental NGOs complete the panorama of participants. Check back for exclusive stories from Friday onwards. Biopact - July 04, 2007.

    China's state-owned grain group COFCO says Beijing has stopped approving new fuel ethanol projects regardless of the raw materials, which has put a brake on its plan to build a sweet potato-based plant in Hebei. The Standard (Hong Kong) - July 03, 2007.

    Blue Diamond Ventures and the University of Texas A&M have formed a biofuels research alliance. The University will assist Blue Diamond with the production and conversion of non-food crops for manufacturing second-generation biofuels. MarketWire - July 03, 2007.

    African Union leaders are to discuss the idea of a single pan-African government, on the second day of their summit in Accra, Ghana. Libya's Colonel Muammar Gaddafi is championing the idea, but many African leaders are wary of the proposal. BBC - July 02, 2007.

    Triple Point Technology, a supplier of cross-industry software platforms for the supply, trading, marketing and movement of commodities, announced today the release and general availability of Commodity XL for Biofuels™. The software platform is engineered to address the rapidly escalating global market for renewable energy fuels and their feedstocks. Business Wire - July 02, 2007.

    Latin America's largest construction and engineering firm, Constructora Norberto Odebrecht SA, announced plans to invest some US$2.6 billion (€1.9 billion) to get into Brazil's booming ethanol business. It aims to reach a crushing capacity of 30 million to 40 million metric tons (33 million to 44 million tons) of cane per harvest over the next eight years. More soon. International Herald Tribune - June 30, 2007.

    QuestAir Technologies announces it has received an order valued at US$2.85 million for an M-3100 system to upgrade biogas created from organic waste to pipeline quality methane. QuestAir's multi-unit M-3100 system was purchased by Phase 3 Developments & Investments, LLC of Ohio, a developer of renewable energy projects in the agricultural sector. The plant is expected to be fully operational in the spring of 2008. Market Wire - June 30, 2007.

    Siemens Energy & Automation, Inc. and the U.S. National Corn-to-Ethanol Research Center (NCERC) today announced a partnership to speed the growth of alternative fuel technology. The 10-year agreement between the center and Siemens represents transfers of equipment, software and on-site simulation training. The NCERC facilitates the commercialization of new technologies for producing ethanol more effectively and plays a key role in the Bio-Fuels Industry for Workforce Training to assist in the growing need for qualified personnel to operate and manage bio-fuel refineries across the country. Business Wire - June 29, 2007.

    A paper published in the latest issue of the Journal of the American Ceramic Society proposes a new method of producing hydrogen for portable fuel cells that can work steadily for 10-20 times the length of equivalently sized Lithium-ion batteries. Zhen-Yan Deng, lead author, found that modified aluminum powder can be used to react with water to produce hydrogen at room temperature and under normal atmospheric pressure. The result is a cost-efficient method for powering fuel cells that can be used in portable applications and hybrid vehicles. More soon. Blackwell Publishing - June 29, 2007.


Creative Commons License


Wednesday, July 18, 2007

Scientist skeptical of algae-to-biofuels potential - interview

Several recent developments have shed doubt on the viability of algae-to-biofuels concepts. Companies have exaggerated their production capacity, experienced serious failures, switched technologies (greenhouses instead of photobioreactors) or simply decided to give up on the concept all together and started investing in terrestrial energy crops instead. Biopact has always been open minded about algae and their potential as biofuel feedstocks: if the technology works out, then all the better for all of us, but if progress is slow and the concept needs much more research, then we think this should be stated in earnest (previous post).

Laurens Rademakers conducted the following interview with Dr. Krassen Dimitrov, who recently made an in-depth analysis of algae-to-biofuel concepts. The scientist remains a skeptic and outlines why he thinks it won't be easy to utilize the micro-organisms to produce large amounts of renewable fuels. He also sketches his view on more promising sustainable energy concepts, and on the challenges ahead to mitigate climate change. Dr. Dimitrov works at the Australian Institute for Bioengineering and Nanotechnology (AIBN, University of Queensland), where he carries out research at the interface of biotech and nanotech.

Biopact: A while ago, you started writing about biofuels made from algae and you have serious doubts about the potential of this technology. What is the basis of your skepticism?
Dr. Dimitrov: Interest in biofuels rises with clockwork regularity whenever the words 'energy crisis' enter the news. This was the case in the 1980s and all of the options, including microalgae, were considered and heavily researched back then. My own interests in biofuels began in the 90s as I considered them for my next career move.

The reason algae are always quoted as the 'perfect' feedstock is that they can grow extremely fast in optimal conditions. In Mother Nature, however, 'fast' is not always a winner, or else the entire biosphere would have been overtaken by bacteria, which can divide every twenty minutes.

Fast proliferation is usually at the expense of rigour and adaptability. Plants do not grow as quickly as algae, however, they have elaborate mechanisms that allow them to survive and grow in various conditions, so they require less care and lower expenses for cultivation.

Therefore, with algae one has to always consider the trade-off between high growth rates and how expensive it is to maintain conditions that would allow them. The other very important boundary is imposed by thermodynamics - the yield is limited by the amount of energy (sunlight) available – so improving the cultivating conditions follows the law of diminishing returns, as every percentage of yield that one can wrestle out becomes harder and harder as one approaches the theoretical limit.

Biopact: You made things concrete by writing a case study on the technology of a particular algae-to-biofuels company, GreenFuels Technologies. What were your findings?
Dr. Dimitrov: GreenFuel Technologies gained notoriety for their heavy promotion of microalgae cultivation in photobioreactors (PBRs), however, following the considerations above, this is probably the most absurd approach that can be undertaken. While it is expected that PBRs would be best suited to allow maximum growth rates, these are hardly devices that cancel the laws of thermodynamics. In my study I have shown that while it may be theoretically possible to achieve growth rates that are up to ten times higher than the best terrestrial growth rates (in the tropics), the expenses associated with PBRs are hundreds of times larger than terrestrial cultivation, making PBRs economically illogical:
:: :: :: :: :: :: :: :: :: ::

My GreenFuel study [*.pdf] focused on industrial photosynthetic capture through PBRs, which are the most expensive extreme in the algae sector. Going down the expense curve, there are approaches - such as open ponds - that are less expensive; potentially there may be some optimum, where microalgae cultivation becomes cheap enough yet with sufficient control over external conditions to secure reasonable yields. Open ponds, are still iffy in my opinion, however, they are not as absurd as PBRs.

I presented my study to Jennifer Fonstad, who is currently the chairman of GreenFuel, on March 15th. I have not heard directly back from the company, however, they had circulated a response, that I found lacking, and that can be found here.

Interestingly in their latest releases, GreenFuel avoids using the word 'photobioreactor', and instead prefers 'greenhouses'. I have seen a schematic of their 'third generation design' and it is basically an algal pond with bubbling CO2 that is housed in a greenhouse. From that we can safely assume that the bioreactor is dead, after millions of dollars were spent on it and GreenFuel is now in the business of greenhouse aquaculture. This is not going to work either, eventually they will either have to shut down, or join the other companies that pursue open ponds.

Speaking of how GreenFuel responds to criticism, I just have to mention that the company had threatened a very prominent scientist, with decades of experience in algal research who, when asked about their approach, had expressed a strong skepticism. When I saw the legalistic threat against this legitimate skeptic, it made me truly infuriated. Misusing the legal process to shut up scientific experts can only be described as medieval.

Biopact: So what's your assessment of algae-based biofuels for the longer term? Will the technology ever be viable on a large scale?
Dr. Dimitrov: The answers above partially address this issue. There is no question that microalgae have the potential for high productivity per area, albeit with all associated high cultivation costs. In certain Malthusian scenarios of the future one can envision that land becomes so expensive that humans will need to highly optimize its use, for animal feed, for example. In terms of making significant contribution to energy in the next 20-30 years, though, the answer is a sound 'no', and if somebody wants to bet me on that, I would gladly take that bet.

Biopact: You conclude that there is a real 'hype' surrounding algae biofuels. But the sector is attracting some serious money from venture capitalists. How can investors be so blind to basic physics and biological laws, which you demonstrated to work against algae biofuels?
Dr. Dimitrov: Some venture capitalists can be blind, ignorant and disrespectful towards science, there is no question about that and I have experienced it firsthand. This is, however, only one third of the answer; there are two other factors at play.

First, some venture investors operate on the principle 'find the bigger fool'. When they start a company they don’t think about building a long-lasting business, but rather making it attractive to somebody who is less sophisticated, such as a big bureaucratic corporation, or alternatively, promoting it to the public with the help of corrupt investment bankers. We saw this with the internet bubble a decade ago: established businesses paid crazy money for unproven internet startups; the scandals with investor bankers and analysts shamelessly promoting Internet IPOs. Undoubtedly, there is a current hope that something like that will develop around alternative energy.

Second, investing in fancy alternative energy startups helps some venture capitalists in their fundraising. VCs are paid a fixed percentage of assets, which is irrespective of how well they do. Getting money from limited partners is extremely competitive and it helps their 'dog and pony show' to demonstrate that they are abreast the fashionable green energy wave.

Ultimately money changes hands, but no value is created, so who is left holding the bag? All evidence points that it is the pension funds who will get shafted. Due to demographics in the Western world there is lot of retirement money that need to be invested now; unfortunately with investor managers like these some people will have retirements that are less comfortable that they would have hoped for.

Biopact: So let's consider algae to be out of the race for now. The global energy and fuel crisis, as well as climate change, will have to be tackled in other ways. What do you see as absolute priorities to help solve these intertwined crises, when it comes to our energy consumption?
Dr. Dimitrov: These are two separate issues: for the energy and fuel crisis we have strong market forces in place, while for global climate change we don’t.

Because of that the fuel issue is actually being addressed, here are examples of things that are significant now and that were not fifteen years ago:
  • Tar sands are increasingly becoming exploited for oil production, the volumes have grown a lot, especially in Canada.
  • In some countries, for example in Eastern Europe, people are en masse retrofitting their cars to run on compressed gas. [Note: Pakistan would be another example of a successful CNG program; the country succeeded in converting 1 million cars in under two years time - more here]
  • Bioethanol has grown dramatically. At current oil prices ethanol from sugarcane is very competitive: Brazil has the land and the intent to go much further in that regard.
  • Hybrid cars that consume significantly less fuels are becoming very popular in the Western world.
  • There are many gas-to-liquid and coal-to-liquid projects in various stages of development around the world, in Qatar, China, and Papua New Guinea.
All these things are happening, and will continue for the next 15-20 years. People need to understand that in energy we cannot expect dramatic changes overnight. The sector is so enormously huge, it takes many years to design and build an energy project. We have become used to the fast pace in the IT world, if you write a new software you can distribute it over the Internet and it can become adopted worldwide within months. Nothing like that will happen with fuels.

In terms of climate change the market just doesn’t work and things will get much worse before they get better. Especially since some of these fuel alternatives above that are most cost effective, such as CTL and tar sands, actually have a larger CO2 footprint than conventional oil. There is a great article on that by UC-Berkeley. This CO2 from emerging liquid fuels is in addition to the new cohort of coal-fired power plants that is coming online.

When the world gets to actually doing something concrete and meaningful in regard to global warming, I strongly believe that the only option left would be to scrub CO2 from the air, I will be writing on that in the near future.

Biopact: You are working in the field of nanotechnology and at the interface of nano- and biotech. Do you see any interesting developments in these disciplines that could lead to clean and affordable energy?
Dr. Dimitrov: Yes, as a way of introduction, let me continue from the previous question. One approach that experts agree is a most technologically ready form of non-carbon energy production is Concentrated Solar Power. It is a viable solar conversion approach and we will likely see CSP grow in significance. CSP generates electricity, however that does not address the transportation sector, as the problem with electric cars is still their range. We believe that nanotechnology can play significant role in designing batteries with higher and higher energy densities so that electric cars charged on CSP electricity can become reality. At AIBN we have several projects on using nanotechnology for improved battery performance.

Realistically, I don’t expect that energy densities will ever approach these of liquid hydrocarbons, however, electric cars, in addition to lowering emissions have other benefits:
  1. better efficiencies of electric motors compared to ICE. While a tank of gas will always contain more energy than a battery with a similar volume, less of this energy goes to the wheels in the ICE than in the electric car
  2. less noise pollution: a factor in big cities
  3. better acceleration, electric cars are fun to drive
So, if you are to ask me today, what 'sustainable future' I believe has the best chance of succeeding in the long run, it will be electricity generation via CSP tied to electric cars for transportation. That’s something that could take 25-30 years to materialize in scale, but it has a shot.

Biopact, cc, 2007.

Picture
: Tetraselmis Suecica, a large green flagellate with a high lipid level that was tested extensively during the U.S. Aquatic Species Program in the 1980s.

References:
Dimitrov, K. "GreenFuel Technologies, a Case Study for Industrial Photosynthetic Energy Capture" [*.pdf] - Brisbane, Australia, March 2007.

Dimitrov, K. "GreenFuel Technologies: Case Study for Industrial Photosynthetic Capture - Follow-up Discussion" [*.pdf] - Brisbane, Australia, April 2007.

Updates on Dimitrov's analyses of algae biofuels can be found here.

Biopact: An in-depth look at biofuels from algae - January 19, 2007


1 Comments:

Dave Jensen said...

Please allow me to post and ask experienced biotechnology professionals who have a knack for giving back to young people to come and visit our mentoring site, the AAAS Science Careers Discussion Forum. This is an online discussion forum with thousands of unique visitors a week, all asking questions about biotech careers, or posting advice there for others to read. We need experienced people, in various career niches, to stop by on occasion and spend a few minutes helping these grad students and postdocs. This site represents the future of the industry, and we need your help! The transition to biotech industry from academia is not an easy one. Thanks, Dave Jensen, Moderator
http://sciencecareers.sciencemag.org/career_development/tools_resources/forum/home

12:03 AM  

Post a Comment

Links to this post:

Create a Link

<< Home