Students patent biopolymer made from biodiesel and wine byproducts
A team of undergraduate engineering students at Oregon State University has discovered that blending byproducts from biodiesel production and winemaking produces an environmentally friendly, biodegradable polymer that could one day replace polystyrene foam. It may also be valuable in the manufacture of furniture, particle board, fire logs, insulation and even hair gel.
The process is so unique and potentially marketable that the students have applied for a patent to protect their intellectual property, said David Hackleman, the Linus Pauling Chair at the OSU College of Engineering.
Christen Glarborg, Patrick O’Connor, Heather Paris and Alana Warner-Tuhy – all seniors studying chemical engineering – delved into combining glycerin, a byproduct of biodiesel production, and tartaric acid, an organic crystalline byproduct of wine production used widely as a food additive. The production of biodiesel produces a lot of glycerin (glycerol), which is why researchers are looking into using it for new applications and products (earlier post and references there).
When put together, glycerin and tartaric acid make a hard, bubbly polymer. The material biodegrades in water. Dr. Hackleman suggested the students try to mold it into a tray, to make a product similar to the polystyrene foam trays used to pack meat, as you find them in the supermarket.
But their first experiments resulted in a rock-hard mess: think of cooking taffy too long, so that it sticks so hard, you have to throw the pot away. The young researchers persevered until they produced a more manageable glue, which they decided to try mixing with other byproducts such as sawdust and woodchips.
A material that was moldable, though somewhat tacky came out of it. After heating eat in an oven to see if it would firm up, it seemed they were possibly onto a particleboard for “green” building. They found that at 600 degrees, the polymer vaporized. This brought them to consider its use as ash-free logs or pellets for heating:
bioenergy :: biofuels :: energy :: sustainability :: biodiesel :: glycerin ::biopolymer :: biodegradable :: bioeconomy ::
While the students continued exploring possibilities, Hackleman knew enough about entrepreneurship to realize they should begin the process of protecting their intellectual property. He steered them to OSU’s Office of Technology Transfer, where their invention disclosure was brought to the stage of “patent pending.”
The students are now focused on testing and refining the polymer for strength and biodegradability. While it is not yet clear whether or not the technology will make it to commercialization, it’s certainly a boost for the students, Hackleman said.
The team won "Best Chemical Engineering Project" and was runner-up for "People’s Choice Award" at OSU’s eighth annual Engineering Expo in May. The team members displayed their research among more than 100 student design projects and product prototypes.
"I’m delighted, but not totally surprised, that they can now add to their report the words ‘patent application pending,’" Hackleman said.
Image: glycerin settles at the bottom of a tank of biodiesel. For each tonne of biodiesel produced, some 100kg of glycerin becomes available as a byproduct.
The process is so unique and potentially marketable that the students have applied for a patent to protect their intellectual property, said David Hackleman, the Linus Pauling Chair at the OSU College of Engineering.
Christen Glarborg, Patrick O’Connor, Heather Paris and Alana Warner-Tuhy – all seniors studying chemical engineering – delved into combining glycerin, a byproduct of biodiesel production, and tartaric acid, an organic crystalline byproduct of wine production used widely as a food additive. The production of biodiesel produces a lot of glycerin (glycerol), which is why researchers are looking into using it for new applications and products (earlier post and references there).
When put together, glycerin and tartaric acid make a hard, bubbly polymer. The material biodegrades in water. Dr. Hackleman suggested the students try to mold it into a tray, to make a product similar to the polystyrene foam trays used to pack meat, as you find them in the supermarket.
But their first experiments resulted in a rock-hard mess: think of cooking taffy too long, so that it sticks so hard, you have to throw the pot away. The young researchers persevered until they produced a more manageable glue, which they decided to try mixing with other byproducts such as sawdust and woodchips.
A material that was moldable, though somewhat tacky came out of it. After heating eat in an oven to see if it would firm up, it seemed they were possibly onto a particleboard for “green” building. They found that at 600 degrees, the polymer vaporized. This brought them to consider its use as ash-free logs or pellets for heating:
bioenergy :: biofuels :: energy :: sustainability :: biodiesel :: glycerin ::biopolymer :: biodegradable :: bioeconomy ::
While the students continued exploring possibilities, Hackleman knew enough about entrepreneurship to realize they should begin the process of protecting their intellectual property. He steered them to OSU’s Office of Technology Transfer, where their invention disclosure was brought to the stage of “patent pending.”
The students are now focused on testing and refining the polymer for strength and biodegradability. While it is not yet clear whether or not the technology will make it to commercialization, it’s certainly a boost for the students, Hackleman said.
The team won "Best Chemical Engineering Project" and was runner-up for "People’s Choice Award" at OSU’s eighth annual Engineering Expo in May. The team members displayed their research among more than 100 student design projects and product prototypes.
"I’m delighted, but not totally surprised, that they can now add to their report the words ‘patent application pending,’" Hackleman said.
Image: glycerin settles at the bottom of a tank of biodiesel. For each tonne of biodiesel produced, some 100kg of glycerin becomes available as a byproduct.
0 Comments:
Post a Comment
Links to this post:
Create a Link
<< Home