New company called 'Biohydrogen' to make H2 from sugar
The problem with hydrogen is that it is merely an energy carrier and needs a primary energy source from which the gas can be obtained. If this first source is a fossil fuel, then hydrogen isn't really a clean energy carrier. If the gas is made from the electrolysis of water, which is a rather energy-intensive process, then electricity is needed, and the dilemma remains: where do we get the electricity from? And can't we use this electricity directly in less costly batteries instead of making the detour via fuel cells? Using nuclear energy to split water is very expensive, as are solar and wind power, so these options to make hydrogen are cancelled too. For a well-to-wheel analysis of these different H2 production paths and their costs, see our earlier discussion and the graph (click to enlarge). Two thorough critiques of the costly push towards a 'hydrogen economy' that might not be that feasible at all, were presented here and here.
Biohydrogen is probably the most competitive of the non-fossil fuel production routes. There are roughly three main ways of obtaining the gas from biological sources: (1) biochemical conversion (diagram, click to enlarge): chemotrophic or phototrophic micro-organisms are allowed to ferment sugars, under anaerobic or aerobic conditions (depending on the micro-organism) during which hydrogenase or nitrogenase enzymes produce hydrogen directly (on H2 production from cyanobacteria and micro-algae see the last section of our post on biofuels from algae), (2) thermochemical conversion: biomass in solid form (wood, straw, etc) is transformed through gasification into a hydrogen-rich gas, from which the H2 is then separated, or (3) indirectly from biogas: biomass is anaerobically fermented into biogas, the methane of which is further converted into hydrogen (similar to H2 production from natural gas); combinations between biohydrogen and biomethane production are being researched as well.
Biofusion, a British company specialising in the commercialisation of university intellectual property, has now launched [*pdf] a new company to develop such methods of producing commercial quantities of hydrogen from biogenic sources. The company, called BioHydrogen, will focus initially on a metabolically engineered microbial production method capable of producing hydrogen from fermentable sugars.
According to Biofusion, the future of the technology is promising, with initial research results looking positive. "The concept of a hydrogen based energy economy, where hydrogen is produced economically on an industrial scale through a non greenhouse gas generating, renewable process is of significant interest to both governments and the world's major energy providers," commented Biofusion's chief executive David Baynes.
We call this scientific adventure part of the carbohydrate economy, because the original source for the H2 is sugar or starch which can just as well be fermented into liquid biofuels or biomethane, fuels that can already be used in fuel cells (direct alcohol fuel cells and molten carbonate fuel cells operating on biogas):
bioenergy :: biofuels :: energy :: sustainability :: hydrogen :: biohydrogen :: sugar :: biomass ::
But David Baynes of Biofusion thinks making the detour via hydrogen is still worth investigating. He added that "if the initial impressive results can be built upon to deliver a commercially viable production model for hydrogen, then it could be a radical alternative for the production of hydrogen in a future energy economy."
The new company will receive an initial £200,000 from Biofusion to aid research, with Biofusion retaining a 60 per cent stake in the company.
Biofusion was established in 2002 to commercialise university-generated IP. Biofusion has signed long term agreements with two of the UK’s top ten research intensive universities (University of Sheffield and Cardiff University) giving a combined R&D spend attributable to Biofusion of approximately £114 million a year.
Biofusion’s first agreement was a ten-year exclusive arrangement with the University of Sheffield for the commercialisation of IP owned by the University in the area of medical life sciences. Biofusion has shareholdings in a portfolio of 16 Sheffield University spin-out companies including Asterion, Axordia, Celltran, Lifestyle Choices, Diurnal and Phase Focus. The University of Sheffield was ranked 5th in the UK for the quality of its life sciences research and will be spending an estimated £0.5bn of research funding over the lifetime over the life of the Sheffield Agreement.
In January 2007, Biofusion completed a long-term exclusive agreement with Cardiff University, to commercialise 100% of all Cardiff University’s research-generated IP. Biofusion has shareholdings in a portfolio of seven Cardiff University spin-out companies including Abcellute, Q-Chip and Cardiff Protides. Cardiff University was ranked 7th in the UK in the most recent research rankings and will be spending over £1.0bn of research funding over the lifetime over the life of the Cardiff Agreement.
More information:
H2Daily: "Hydrogen From Sugar- A Sweet Idea" - April 13, 2007.
Biofusion: Biofusion Launches BioHydrogen Ltd to develop a radical new process of producing commercial quantities of hydrogen from sugar [*.pdf] - April 2, 2007.
There is a lot of research going on in biohydrogen, so these are just some pointers:
The BBC has a good overview of the basics of H2 production from micro-organisms, at its H2G2 website.
Iowa State University, Office of Biorenewables Programs: Biological Hydrogen Production from Renewable Organic Wastes.
European biohydrogen projects presented by the Biohydrogen Network.
To stress our love for sweet potatoes and the concept of 'carbohydrate economy' which we randomly linked to this crop - but which was originally thougth out by sci-fi authors - see this article:
Yokoi Haruhiko, Saitsu Akio, et al, "Microbial hydrogen production from sweet potato starch residue" [*abstract], Journal of bioscience and bioengineering, 2001, vol. 91, no1, pp. 58-63.
Biohydrogen is probably the most competitive of the non-fossil fuel production routes. There are roughly three main ways of obtaining the gas from biological sources: (1) biochemical conversion (diagram, click to enlarge): chemotrophic or phototrophic micro-organisms are allowed to ferment sugars, under anaerobic or aerobic conditions (depending on the micro-organism) during which hydrogenase or nitrogenase enzymes produce hydrogen directly (on H2 production from cyanobacteria and micro-algae see the last section of our post on biofuels from algae), (2) thermochemical conversion: biomass in solid form (wood, straw, etc) is transformed through gasification into a hydrogen-rich gas, from which the H2 is then separated, or (3) indirectly from biogas: biomass is anaerobically fermented into biogas, the methane of which is further converted into hydrogen (similar to H2 production from natural gas); combinations between biohydrogen and biomethane production are being researched as well.
Biofusion, a British company specialising in the commercialisation of university intellectual property, has now launched [*pdf] a new company to develop such methods of producing commercial quantities of hydrogen from biogenic sources. The company, called BioHydrogen, will focus initially on a metabolically engineered microbial production method capable of producing hydrogen from fermentable sugars.
According to Biofusion, the future of the technology is promising, with initial research results looking positive. "The concept of a hydrogen based energy economy, where hydrogen is produced economically on an industrial scale through a non greenhouse gas generating, renewable process is of significant interest to both governments and the world's major energy providers," commented Biofusion's chief executive David Baynes.
We call this scientific adventure part of the carbohydrate economy, because the original source for the H2 is sugar or starch which can just as well be fermented into liquid biofuels or biomethane, fuels that can already be used in fuel cells (direct alcohol fuel cells and molten carbonate fuel cells operating on biogas):
bioenergy :: biofuels :: energy :: sustainability :: hydrogen :: biohydrogen :: sugar :: biomass ::
But David Baynes of Biofusion thinks making the detour via hydrogen is still worth investigating. He added that "if the initial impressive results can be built upon to deliver a commercially viable production model for hydrogen, then it could be a radical alternative for the production of hydrogen in a future energy economy."
The new company will receive an initial £200,000 from Biofusion to aid research, with Biofusion retaining a 60 per cent stake in the company.
Biofusion was established in 2002 to commercialise university-generated IP. Biofusion has signed long term agreements with two of the UK’s top ten research intensive universities (University of Sheffield and Cardiff University) giving a combined R&D spend attributable to Biofusion of approximately £114 million a year.
Biofusion’s first agreement was a ten-year exclusive arrangement with the University of Sheffield for the commercialisation of IP owned by the University in the area of medical life sciences. Biofusion has shareholdings in a portfolio of 16 Sheffield University spin-out companies including Asterion, Axordia, Celltran, Lifestyle Choices, Diurnal and Phase Focus. The University of Sheffield was ranked 5th in the UK for the quality of its life sciences research and will be spending an estimated £0.5bn of research funding over the lifetime over the life of the Sheffield Agreement.
In January 2007, Biofusion completed a long-term exclusive agreement with Cardiff University, to commercialise 100% of all Cardiff University’s research-generated IP. Biofusion has shareholdings in a portfolio of seven Cardiff University spin-out companies including Abcellute, Q-Chip and Cardiff Protides. Cardiff University was ranked 7th in the UK in the most recent research rankings and will be spending over £1.0bn of research funding over the lifetime over the life of the Cardiff Agreement.
More information:
H2Daily: "Hydrogen From Sugar- A Sweet Idea" - April 13, 2007.
Biofusion: Biofusion Launches BioHydrogen Ltd to develop a radical new process of producing commercial quantities of hydrogen from sugar [*.pdf] - April 2, 2007.
There is a lot of research going on in biohydrogen, so these are just some pointers:
The BBC has a good overview of the basics of H2 production from micro-organisms, at its H2G2 website.
Iowa State University, Office of Biorenewables Programs: Biological Hydrogen Production from Renewable Organic Wastes.
European biohydrogen projects presented by the Biohydrogen Network.
To stress our love for sweet potatoes and the concept of 'carbohydrate economy' which we randomly linked to this crop - but which was originally thougth out by sci-fi authors - see this article:
Yokoi Haruhiko, Saitsu Akio, et al, "Microbial hydrogen production from sweet potato starch residue" [*abstract], Journal of bioscience and bioengineering, 2001, vol. 91, no1, pp. 58-63.
0 Comments:
Post a Comment
Links to this post:
Create a Link
<< Home