Göteborg Energi to build world's largest plant to produce synthetic natural gas from biomass
Power company Göteborg Energi AB plans to build the world's biggest plant for producing 'synthetic natural gas' (SNG) from solid biomass, to be located in Rya, Sweden. Plans call for the gasification plant to burn forestry residues to produce a hydrogen-rich syngas that will be further transformed via a methanation step into a gas the properties of which are similar to natural gas. This SNG or 'green gas' can then be used either directly for the production of power and heat, fed into the natural gas grid or in natural gas vehicles.
The project is called GoBiGas [*.pdf] and was filed as a venture for EU support and partnerships under the 7th Framework Programme (the EU's science and technology funding mechanism).
According to the project file:
SNG production process
The production of SNG differs from biogas production which transforms wet biomass via anaerobic digestion, a biochemical conversion technique. SNG or 'green gas' made from relatively dry feedstocks such as forestry residues relies on advanced gasification and methanation technologies [*.pdf] such as supercritical water gasification, steam-blown indirect gasification, pressurised oxygenblown gasification or hydrogasification. The GoBiGas project also looks at the option to co-produce Fischer-Tropsch biofuels alongside SNG (image, click to enlarge).
All these technologies involve upstream gasification followed, after gas cleanup, by a downstream methanation step:
bioenergy :: biofuels :: energy :: sustainability :: biomass :: gasification :: syngas :: methanation :: synthetic natural gas :: Fischer-Tropsch :: Sweden ::
Other scientists have identified upstream-pressurised oxygen-blown gasification and indirect atmospheric steam-blown gasification with downstream methanation routes to be the most promising options for stand-alone SNG production from relatively dry biomass feedstocks such as forestry residues. In combination with downstream methanation, SNG production efficiencies up to 70% (LHV) can be achieved. Successful integrated lab-scale demonstrations of SNG production have confirmed the potential of gas cleanup concepts to deliver a product gas that can satisfy, among others, the specifications for downstream methanation.
For 100 MWth stand-alone systems and biomass costs of 2.3 €/GJwood, SNG production costs are estimated to range from 7.8 to 8.5 €/GJ of SNG and the CO2 emission reduction costs range from 83 to 95 €/tonne. 'Green gas' production via biomass gasification with downstream methanation will become an economic feasible process if producers receives the same tax incentives currently given to producers of green electricity.
Ann Törnblom, communication chief of Göteborg Energi told Swedish reporters that so far 30 million krones have been acquired for the project. This allows for the finalisation of crucial research and development steps that still have to be undertaken for the design of a pilot.
The final plant will be the world's largest SNG facility, with an estimated capacity of 30,000 cubic meters per day. According to project manager Ginger Gunnarsson, design of the main plant will take at least another year and will cost 1.5 billion krones in total. According to plan the industrial-scale plant will be ready by 2012.
More information:
NyTeknik: Göteborg planerar bygga världens största gasfabrik - April 23, 2007.
United Press International: Gothenburg to open huge biofuel plant - April 22, 2007.
Göteborg Energi: GoBiGas – Gothenburg Biomass Gasification Plant [*.pdf] - project dossier filed to the EU's 7th Framework Program - March 2007.
M. Mozaffarian, R.W.R. Zwart, H. Boerrigter, E.P. Deurwaarder, “Green Gas” as SNG (Synthetic Natural Gas), A Renewable Fuel with Conventional Quality [*.pdf] - Energy research Centre of the Netherlands, University of Twente, Department of Chemical Technology, Contribution to the “Science in Thermal and Chemical Biomass Conversion” Conference 30 August – 2 September 2004, Victoria, Vancouver Island, BC, Canada.
The project is called GoBiGas [*.pdf] and was filed as a venture for EU support and partnerships under the 7th Framework Programme (the EU's science and technology funding mechanism).
According to the project file:
GoBiGas will transform 140 MW of low grade biomass such as forestry residues into syngas, with an efficiency of 60-70%. The gas will primarily be distributed to end consumers via the natural gas grid, and used for a variety of applications including vehicles, industrial purposes and electricity production. It may also be used in the adjacent CHP plant directly for high efficiency combined heat and power production.The investment for this project is estimated to be around €163/US$ 221 million. The capacity of the plant will be around 10.95 million cubic meters (386.7 million cubic feet) of SNG per year.
The high methane yield makes the process a good example of extraordinary economization of natural resources. In addition, most of the waste heat from the gasification process will be used for district heating. Thus, the total efficiency of the plant will be approximately 90 %. The choice of technology will determine the exact specifications of the plant. There are different technical solutions available, although none have been tested for this particular application on this large scale.
SNG production process
The production of SNG differs from biogas production which transforms wet biomass via anaerobic digestion, a biochemical conversion technique. SNG or 'green gas' made from relatively dry feedstocks such as forestry residues relies on advanced gasification and methanation technologies [*.pdf] such as supercritical water gasification, steam-blown indirect gasification, pressurised oxygenblown gasification or hydrogasification. The GoBiGas project also looks at the option to co-produce Fischer-Tropsch biofuels alongside SNG (image, click to enlarge).
All these technologies involve upstream gasification followed, after gas cleanup, by a downstream methanation step:
bioenergy :: biofuels :: energy :: sustainability :: biomass :: gasification :: syngas :: methanation :: synthetic natural gas :: Fischer-Tropsch :: Sweden ::
Other scientists have identified upstream-pressurised oxygen-blown gasification and indirect atmospheric steam-blown gasification with downstream methanation routes to be the most promising options for stand-alone SNG production from relatively dry biomass feedstocks such as forestry residues. In combination with downstream methanation, SNG production efficiencies up to 70% (LHV) can be achieved. Successful integrated lab-scale demonstrations of SNG production have confirmed the potential of gas cleanup concepts to deliver a product gas that can satisfy, among others, the specifications for downstream methanation.
For 100 MWth stand-alone systems and biomass costs of 2.3 €/GJwood, SNG production costs are estimated to range from 7.8 to 8.5 €/GJ of SNG and the CO2 emission reduction costs range from 83 to 95 €/tonne. 'Green gas' production via biomass gasification with downstream methanation will become an economic feasible process if producers receives the same tax incentives currently given to producers of green electricity.
Ann Törnblom, communication chief of Göteborg Energi told Swedish reporters that so far 30 million krones have been acquired for the project. This allows for the finalisation of crucial research and development steps that still have to be undertaken for the design of a pilot.
The final plant will be the world's largest SNG facility, with an estimated capacity of 30,000 cubic meters per day. According to project manager Ginger Gunnarsson, design of the main plant will take at least another year and will cost 1.5 billion krones in total. According to plan the industrial-scale plant will be ready by 2012.
More information:
NyTeknik: Göteborg planerar bygga världens största gasfabrik - April 23, 2007.
United Press International: Gothenburg to open huge biofuel plant - April 22, 2007.
Göteborg Energi: GoBiGas – Gothenburg Biomass Gasification Plant [*.pdf] - project dossier filed to the EU's 7th Framework Program - March 2007.
M. Mozaffarian, R.W.R. Zwart, H. Boerrigter, E.P. Deurwaarder, “Green Gas” as SNG (Synthetic Natural Gas), A Renewable Fuel with Conventional Quality [*.pdf] - Energy research Centre of the Netherlands, University of Twente, Department of Chemical Technology, Contribution to the “Science in Thermal and Chemical Biomass Conversion” Conference 30 August – 2 September 2004, Victoria, Vancouver Island, BC, Canada.
0 Comments:
Post a Comment
Links to this post:
Create a Link
<< Home