<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Add to My Yahoo!
Subscribe in NewsGator Online
    Côte d'Ivoire's agriculture minister Amadou Gon has visited the biofuels section of the Salon de l'Agriculture in Paris, one of the largest fairs of its kind. According to his communication office, the minister is looking into drafting a plan for the introduction of biofuels in the West African country. AllAfrica [*French] - March 13, 2007.

    Biofuels and bioenergy producers in Ireland, a country which just recently passed bioenergy legislation, are allocated excise relief for imported biomass. Unison Ireland (subscription req'd). - March 13, 2007.

    EDF Energies Nouvelles, a subsidiary of energy giant Electricité de France, has announced a move into biofuels, by sealing a preliminary agreement with Alcofinance SA of Belgium. Upon completion of a reserved issue of shares for €23 million, EDF Energies Nouvelles will own 25% of a newly formed company housing Belgium-based Alcofinance's ethanol production and distribution activities. Alcofinance's projects are located in the Ghent Bioenergy Valley. BusinessWire - March 13, 2007.

    Fuel Tech, Inc., today announced a demonstration order for its 'Targeted In-Furnace Injection' program, part of a set of technologies aimed at controlling slagging, fouling, corrosion, opacity and acid plume problems in utility scale boilers. The order was placed by an electric generating facility located in Italy, and will be conducted on two biomass units burning a combination of wood chips and olive husks. BusinessWire - March 9, 2007.

    At a biofuels conference ahead of the EU's Summit on energy and climate change, Total's chief of agricultural affairs says building environmentally friendly 'flexible-fuel' cars only cost an additional €200 (US$263) a vehicle and that, overall, ethanol is cheaper than gasoline. MarketWatch - March 8, 2007.

    During a session of Kazakhstan's republican party congress, President Nursultan Nazarbayev announced plans to construct two large ethanol plants with the aim to produce biofuels for exports to Europe. Company 'KazAgro' and the 'akimats' (administrative units) of grain-growing regions will be charged to develop biodiesel, bioethanol and bioproducts. KazInform - March 6, 2007.

    Saab will introduce its BioPower flex-fuel options to its entire 9-3 range, including Sport Sedan, SportCombi and Convertible bodystyles, at the Geneva auto show. GreenCarCongress - March 2, 2007.

    British oil giant BP plans to invest around US$50 million in Indonesia's biofuel industry, using jatropha oil as feedstock. BP will build biofuel plants with an annual capacity of 350,000 tons for which it will need to set up jatropha curcas plantations covering 100,000 hectares of land, to guarantee supply of feedstock, an official said. Antara [*cache] - March 2, 2007.

    The government of Taiwan has decided to increase the acreage dedicated to biofuel crops -- soybean, rape, sunflower, and sweet potato -- from 1,721 hectares in 2006 to 4,550 hectares this year, the Council of Agriculture said. China Post - March 2, 2007.

    Kinder Morgan Energy Partners has announced plans to invest up to €76/US$100 million to expand its terminal facilities to help serve the growing biodiesel market. KMP has entered into long-term agreements with Green Earth Fuels, LLC to build up to 1.3 million barrels of tankage that will handle approximately 8 million barrels of biodiesel production at KMP's terminals on the Houston Ship Channel, the Port of New Orleans and in New York Harbor. PRNewswire - March 1, 2007.

    A project to build a 130 million euro ($172 million) plant to produce 200,000 cubic metres of bioethanol annually was announced by three German groups on Tuesday. The plant will consume about 600,000 tonnes of wheat annually and when operational in the first half of 2009 should provide about a third of Germany's estimated bioethanol requirements. Reuters - Feb. 27, 2007.

    Taiwan's Ministry of Economic Affairs has announced that government vehicles in Taipei City will begin using E3 fuel, composed of 97% gasoline and 3% ethanol, on a trial basis in 2007. Automotive World - Feb. 27, 2007.

    Spanish company Ferry Group is to invest €42/US$55.2 million in a project for the production of biomass fuel pellets in Bulgaria. The 3-year project consists of establishing plantations of paulownia trees near the city of Tran. Paulownia is a fast-growing tree used for the commercial production of fuel pellets. Dnevnik - Feb. 20, 2007.

    Hungary's BHD Hõerõmû Zrt. is to build a 35 billion Forint (€138/US$182 million) commercial biomass-fired power plant with a maximum output of 49.9 MW in Szerencs (northeast Hungary). Portfolio.hu - Feb. 20, 2007.

    Tonight at 9pm, BBC Two will be showing a program on geo-engineering techniques to 'save' the planet from global warming. Five of the world's top scientists propose five radical scientific inventions which could stop climate change dead in its tracks. The ideas include: a giant sunshade in space to filter out the sun's rays and help cool us down; forests of artificial trees that would breath in carbon dioxide and stop the green house effect and a fleet futuristic yachts that will shoot salt water into the clouds thickening them and cooling the planet. BBC News - Feb. 19, 2007.

    Archer Daniels Midland, the largest U.S. ethanol producer, is planning to open a biodiesel plant in Indonesia with Wilmar International Ltd. this year and a wholly owned biodiesel plant in Brazil before July, the Wall Street Journal reported on Thursday. The Brazil plant is expected to be the nation's largest, the paper said. Worldwide, the company projects a fourfold rise in biodiesel production over the next five years. ADM was not immediately available to comment. Reuters - Feb. 16, 2007.


Creative Commons License


Wednesday, March 14, 2007

German scientists find method to predict and increase biomass yield of energy crops

Scientists from the Max-Planck Institut für molekulare Pflanzenphysiologie and the University of Potsdam have discovered [*.pdf/German] important clues for the development of a new plant breeding method that could revolutionise the creation of energy crops that produce high amounts of biomass. The energy contained in this plant matter can be converted into useable liquid, gaseous and solid biofuels.

Traditional plant breeding methods consist of cumbersome process of deliberate interbreeding of closely or distantly related species to produce new crops with desirable properties. Plants are crossbred to introduce traits and genes from one species into a new genetic background. The result is analysed after the new plant type has been grown and if unsatisfactory, the process begins all over again.

By looking at the fundamental growth processes of Arabidopsis thaliana and by identifying the chemical building blocks ('metabolites', see diagram) and their interaction, which drive its growth mechanism, the plant biologists from Germany found clues that make it possible to predict at an early stage which plant will yield most biomass later on. The method, called 'metabolic profiling', offers vast posibilities for the development of a new plant breeding paradigm.

The scientists think the concept of metabolic profiling can be applied to most plants, and will allow researchers to select the most promising ones in an early stage. Since the method makes it possible to predict the sheer biomass productivity of plants, it is especially important for selecting energy crops, where biomass productivity matters most:
"It is in this field that the concept will yield its most immediate results. This method will revolutionize the selection and breeding of dedicated energy crops, that can be used for biomass production." - Rhonda Meyer, Max-Planck Institute for Molecular Plant Physiology
The researchers published their findings in the March 13 issue of the Proceedings of the National Academy of Sciences. It is an open access article.

The method
Through photosynthesis, plants convert sunlight into the production of organic compounds they use to grow. The increase in biomass in plants depends on a multitude of environmental factors (sunlight, the availability of water and nutrients, pests, and so on) and on the plant's capacity to use its biochemical processes and its own internal 'energy reserves' in an optimal manner to bridge periods of environmental stress. This results in a very strict and rigid economy of resources that characterises a plant's metabolism:
:: :: :: :: :: :: :: :: ::

But until now, it was unclear which set of factors and which metabolites precisely determine the growth mechanism of plants. The Max Plack researchers tackled the question by analysing a line of Arabidopsis thaliana (image, click to enlarge), the genetic profile of which is well known. Plant biologists already knew that an important carbohydrate like glucose gives out signals to increase growth and continue cell division. Looking further, the scientists used gaschromatography on the individual parts of the plant, and mass-spectrometry on its invidual chemical substances, such as sugars, acids and proteins.

They then isolated the substances which could be analysed in 85% of the samples. Finally, these selected chemical building blocks were then correlated to the biomass yields of the different samples in the Arabidopsis line. Rhonda Meyer, lead author of the article, says the correlation was so strong that it has now become possible to develop the method that accurately predicts the biomass growth potential of a series of plants, merely by looking at the composition, the amount and ratio of its chemical building blocks.

Image: In crossing different lines of Arabidopsis thaliana researchers observe diferences in biomass yields. The new, crossed generation of plants (upper line) are bigger than their parents (lower line). Using the results from this 'recombinant inbred line' and matching them with the metabolic analysis, it becomes possible to predict the biomass yield of the next generation of crossed plants. Courtesy: Max-Planck Institut für molekulare Pflanzenphysiologie

Diagram: Representation of the most important metabolites known by structure according to CCA on biochemical pathways. This representation of metabolism indicates all known metabolites we analyzed by using GC/MS that could be annotated in MapMan (28). Red color visualizes metabolites which are high ranked in CCA (positions 1–44), with ranking according to the color-coded scale bar.

More information:

Max-Planck Institut fur molekulare Pflanzenphysiologie: Wege aus der Energiekrise: Pflanzen mit mehr Biomasse. Max-Planck-Forscher und ihre Kollegen von der Universität Potsdam finden Hinweise auf eine Methode zur effektiveren Züchtung von "Energiepflanzen" [*.pdf] - March 8, 2007.

Rhonda C. Meyer, Matthias Steinfath, Jan Lisec, Martina Becher, Hanna Witucka-Wall, Ottó Törjék, Oliver Fiehn, Änne Eckhardt, Lothar Willmitzer, Joachim Selbig, Thomas Altmann, "The metabolic signature related to high plant growth rate in Arabidospsis thaliana" [*abstract or full article], PNAS, 5. März 2007

1 Comments:

reden said...

I have seen this before and I hope that with the current developments in technology, a better way would be found very soon!

10:26 AM  

Post a Comment

Links to this post:

Create a Link

<< Home