GALP Energia invests €225 million in 'H-biodiesel'
Portuguese oil company Galp Energia has outlined [*Portuguese] its biofuels strategy for the coming years and announced a €225/US$300 million investment in the production of 500,000 tons of an innovative, second-generation type of biodiesel, known as 'H-biodiesel'.
By 2010, the oil refiner wants to replace 10% of the petroleum products it sells by biofuels, in line with national goals. In order to achieve this, Galp Energia plans to adapt its existing refinery in Porto to accomodate the biodiesel refining infrastructure. From 2008 onwards, it wants to initiate its program by producing 100,000 tons of the new type of biodiesel per year, which will increase to 200,000 tons in 2010. An entirely new plant will be built at its refinery in Sines, where 300,000 tons will be produced. The total capacity of 500,000 tons per year amounts to a production of around 8600 barrels of oil equivalent per day.
The second generation biodiesel is made by hydrogenating and isomerising vegetable oils, in a process similar to the 'H-Biodiesel' developed by Brazil's Petrobras (earlier post and see image, click to enlarge) and by the Italian oil company ENI (see Galp Energia's presentation *.pdf, page 5). Isomerisation is a process in which molecules with a particular chain structure are transformed via a catalyst into isomers with a different chain structure. Hydrogenation involves the direct addition of hydrogen under pressure in the presence of catalysts. It is a process used commonly in the petrochemical industry to convert unsaturated organic compounds into saturated compounds (hydrocarbons). Oil refiners use it to upgrade fossil fuels. The advantage of applying the process, is that the production can be integrated in existing refinery infrastructures and that it can use any type of vegetable oil, including oils that would result in biodiesel of poor quality if traditional transesterification processes were to be used.
The ultra-clean H-biodiesel resulting from the process reduces greenhouse gas emissions by up to 75%, contains lower amounts of aromatic hydrocarbons and its use results in less NOx emissions than petro-diesel. The biodiesel also has a higher calorific value and cetane number. Contrary to first-generation biodiesel, of which only B5 to B10 blends can be handled by unadapted engines, the clean biodiesel can be used in existing engines:
biomass :: bioenergy :: biofuels :: energy :: sustainability :: vegetable oils :: biodiesel :: H-biodiesel :: Portugal ::
Galp Energia's biofuel strategy amounts to a total of €225 million, of which €50 million will be invested in the Porto refinery, where existing facilities will be adapted. The remainder goes to the refinery in Sines, where a new plant will be build. The investment in the renewable fuel is part of an overall investment of €1.645 billion, which Galp Energia plans to inject over the coming years (until 2010).
The project is supported by INETI, the Instituto Nacional de Engenharia, Tecnologia e Inovação, a public laboratory which falls under Portugal's Ministery of Economic Affairs.
More information:
Galp Energia: Biocombustíveis: Estratégia e Compromisso da Galp Energia [*.pdf]- March 14, 2007.
By 2010, the oil refiner wants to replace 10% of the petroleum products it sells by biofuels, in line with national goals. In order to achieve this, Galp Energia plans to adapt its existing refinery in Porto to accomodate the biodiesel refining infrastructure. From 2008 onwards, it wants to initiate its program by producing 100,000 tons of the new type of biodiesel per year, which will increase to 200,000 tons in 2010. An entirely new plant will be built at its refinery in Sines, where 300,000 tons will be produced. The total capacity of 500,000 tons per year amounts to a production of around 8600 barrels of oil equivalent per day.
The second generation biodiesel is made by hydrogenating and isomerising vegetable oils, in a process similar to the 'H-Biodiesel' developed by Brazil's Petrobras (earlier post and see image, click to enlarge) and by the Italian oil company ENI (see Galp Energia's presentation *.pdf, page 5). Isomerisation is a process in which molecules with a particular chain structure are transformed via a catalyst into isomers with a different chain structure. Hydrogenation involves the direct addition of hydrogen under pressure in the presence of catalysts. It is a process used commonly in the petrochemical industry to convert unsaturated organic compounds into saturated compounds (hydrocarbons). Oil refiners use it to upgrade fossil fuels. The advantage of applying the process, is that the production can be integrated in existing refinery infrastructures and that it can use any type of vegetable oil, including oils that would result in biodiesel of poor quality if traditional transesterification processes were to be used.
The ultra-clean H-biodiesel resulting from the process reduces greenhouse gas emissions by up to 75%, contains lower amounts of aromatic hydrocarbons and its use results in less NOx emissions than petro-diesel. The biodiesel also has a higher calorific value and cetane number. Contrary to first-generation biodiesel, of which only B5 to B10 blends can be handled by unadapted engines, the clean biodiesel can be used in existing engines:
biomass :: bioenergy :: biofuels :: energy :: sustainability :: vegetable oils :: biodiesel :: H-biodiesel :: Portugal ::
Galp Energia's biofuel strategy amounts to a total of €225 million, of which €50 million will be invested in the Porto refinery, where existing facilities will be adapted. The remainder goes to the refinery in Sines, where a new plant will be build. The investment in the renewable fuel is part of an overall investment of €1.645 billion, which Galp Energia plans to inject over the coming years (until 2010).
The project is supported by INETI, the Instituto Nacional de Engenharia, Tecnologia e Inovação, a public laboratory which falls under Portugal's Ministery of Economic Affairs.
More information:
Galp Energia: Biocombustíveis: Estratégia e Compromisso da Galp Energia [*.pdf]- March 14, 2007.
0 Comments:
Post a Comment
Links to this post:
Create a Link
<< Home