<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Add to My Yahoo!
Subscribe in NewsGator Online
    During a session of Kazakhstan's republican party congress, President Nursultan Nazarbayev announced plans to construct two large ethanol plants with the aim to produce biofuels for exports to Europe. Company 'KazAgro' and the 'akimats' (administrative units) of grain-growing regions will be charged to develop biodiesel, bioethanol and bioproducts. KazInform - March 6, 2007.

    Saab will introduce its BioPower flex-fuel options to its entire 9-3 range, including Sport Sedan, SportCombi and Convertible bodystyles, at the Geneva auto show. GreenCarCongress - March 2, 2007.

    British oil giant BP plans to invest around US$50 million in Indonesia's biofuel industry, using jatropha oil as feedstock. BP will build biofuel plants with an annual capacity of 350,000 tons for which it will need to set up jatropha curcas plantations covering 100,000 hectares of land, to guarantee supply of feedstock, an official said. Antara [*cache] - March 2, 2007.

    The government of Taiwan has decided to increase the acreage dedicated to biofuel crops -- soybean, rape, sunflower, and sweet potato -- from 1,721 hectares in 2006 to 4,550 hectares this year, the Council of Agriculture said. China Post - March 2, 2007.

    Kinder Morgan Energy Partners has announced plans to invest up to €76/US$100 million to expand its terminal facilities to help serve the growing biodiesel market. KMP has entered into long-term agreements with Green Earth Fuels, LLC to build up to 1.3 million barrels of tankage that will handle approximately 8 million barrels of biodiesel production at KMP's terminals on the Houston Ship Channel, the Port of New Orleans and in New York Harbor. PRNewswire - March 1, 2007.

    A project to build a 130 million euro ($172 million) plant to produce 200,000 cubic metres of bioethanol annually was announced by three German groups on Tuesday. The plant will consume about 600,000 tonnes of wheat annually and when operational in the first half of 2009 should provide about a third of Germany's estimated bioethanol requirements. Reuters - Feb. 27, 2007.

    Taiwan's Ministry of Economic Affairs has announced that government vehicles in Taipei City will begin using E3 fuel, composed of 97% gasoline and 3% ethanol, on a trial basis in 2007. Automotive World - Feb. 27, 2007.

    Spanish company Ferry Group is to invest €42/US$55.2 million in a project for the production of biomass fuel pellets in Bulgaria. The 3-year project consists of establishing plantations of paulownia trees near the city of Tran. Paulownia is a fast-growing tree used for the commercial production of fuel pellets. Dnevnik - Feb. 20, 2007.

    Hungary's BHD Hõerõmû Zrt. is to build a 35 billion Forint (€138/US$182 million) commercial biomass-fired power plant with a maximum output of 49.9 MW in Szerencs (northeast Hungary). Portfolio.hu - Feb. 20, 2007.

    Tonight at 9pm, BBC Two will be showing a program on geo-engineering techniques to 'save' the planet from global warming. Five of the world's top scientists propose five radical scientific inventions which could stop climate change dead in its tracks. The ideas include: a giant sunshade in space to filter out the sun's rays and help cool us down; forests of artificial trees that would breath in carbon dioxide and stop the green house effect and a fleet futuristic yachts that will shoot salt water into the clouds thickening them and cooling the planet. BBC News - Feb. 19, 2007.

    Archer Daniels Midland, the largest U.S. ethanol producer, is planning to open a biodiesel plant in Indonesia with Wilmar International Ltd. this year and a wholly owned biodiesel plant in Brazil before July, the Wall Street Journal reported on Thursday. The Brazil plant is expected to be the nation's largest, the paper said. Worldwide, the company projects a fourfold rise in biodiesel production over the next five years. ADM was not immediately available to comment. Reuters - Feb. 16, 2007.

    Finnish engineering firm Pöyry Oyj has been awarded contracts by San Carlos Bioenergy Inc. to provide services for the first bioethanol plant in the Philippines. The aggregate contract value is EUR 10 million. The plant is to be build in the Province of San Carlos on the north-eastern tip of Negros Island. The plant is expected to deliver 120,000 liters/day of bioethanol and 4 MW of excess power to the grid. Kauppalehti Online - Feb. 15, 2007.

    In order to reduce fuel costs, a Mukono-based flower farm which exports to Europe, is building its own biodiesel plant, based on using Jatropha curcas seeds. It estimates the fuel will cut production costs by up to 20%. New Vision (Kampala, Uganda) - Feb. 12, 2007.

    The Tokyo Metropolitan Government has decided to use 10% biodiesel in its fleet of public buses. The world's largest city is served by the Toei Bus System, which is used by some 570,000 people daily. Digital World Tokyo - Feb. 12, 2007.

    Fearing lack of electricity supply in South Africa and a price tag on CO2, WSP Group SA is investing in a biomass power plant that will replace coal in the Letaba Citrus juicing plant which is located in Tzaneen. Mining Weekly - Feb. 8, 2007.

    In what it calls an important addition to its global R&D capabilities, Archer Daniels Midland (ADM) is to build a new bioenergy research center in Hamburg, Germany. World Grain - Feb. 5, 2007.

    EthaBlog's Henrique Oliveira interviews leading Brazilian biofuels consultant Marcelo Coelho who offers insights into the (foreign) investment dynamics in the sector, the history of Brazilian ethanol and the relationship between oil price trends and biofuels. EthaBlog - Feb. 2, 2007.

    The government of Taiwan has announced its renewable energy target: 12% of all energy should come from renewables by 2020. The plan is expected to revitalise Taiwan's agricultural sector and to boost its nascent biomass industry. China Post - Feb. 2, 2007.

    Production at Cantarell, the world's second biggest oil field, declined by 500,000 barrels or 25% last year. This virtual collapse is unfolding much faster than projections from Mexico's state-run oil giant Petroleos Mexicanos. Wall Street Journal - Jan. 30, 2007.

    Dubai-based and AIM listed Teejori Ltd. has entered into an agreement to invest €6 million to acquire a 16.7% interest in Bekon, which developed two proprietary technologies enabling dry-fermentation of biomass. Both technologies allow it to design, establish and operate biogas plants in a highly efficient way. Dry-Fermentation offers significant advantages to the existing widely used wet fermentation process of converting biomass to biogas. Ame Info - Jan. 22, 2007.

    Hindustan Petroleum Corporation Limited is to build a biofuel production plant in the tribal belt of Banswara, Rajasthan, India. The petroleum company has acquired 20,000 hectares of low value land in the district, which it plans to commit to growing jatropha and other biofuel crops. The company's chairman said HPCL was also looking for similar wasteland in the state of Chhattisgarh. Zee News - Jan. 15, 2007.

    The Zimbabwean national police begins planting jatropha for a pilot project that must result in a daily production of 1000 liters of biodiesel. The Herald (Harare), Via AllAfrica - Jan. 12, 2007.

    In order to meet its Kyoto obligations and to cut dependence on oil, Japan has started importing biofuels from Brazil and elsewhere. And even though the country has limited local bioenergy potential, its Agriculture Ministry will begin a search for natural resources, including farm products and their residues, that can be used to make biofuels in Japan. To this end, studies will be conducted at 900 locations nationwide over a three-year period. The Japan Times - Jan. 12, 2007.

    Chrysler's chief economist Van Jolissaint has launched an arrogant attack on "quasi-hysterical Europeans" and their attitudes to global warming, calling the Stern Review 'dubious'. The remarks illustrate the yawning gap between opinions on climate change among Europeans and Americans, but they also strengthen the view that announcements by US car makers and legislators about the development of green vehicles are nothing more than window dressing. Today, the EU announced its comprehensive energy policy for the 21st century, with climate change at the center of it. BBC News - Jan. 10, 2007.

    The new Canadian government is investing $840,000 into BioMatera Inc. a biotech company that develops industrial biopolymers (such as PHA) that have wide-scale applications in the plastics, farmaceutical and cosmetics industries. Plant-based biopolymers such as PHA are biodegradable and renewable. Government of Canada - Jan. 9, 2007.

Creative Commons License

Wednesday, March 07, 2007

Biomass-to-liquids seen as key to biofuels future

Different ways to make biofuels can be grouped in 'generations', according to the type of technology they rely on and the biomass feedstocks they convert into fuel.
  • 'first generation' biofuels, such as ethanol made from corn or sugarcane and biodiesel made from rapeseed, make use of the well established processes of starch and sugar fermentation (in the case of ethanol) and transesterification (in the case of biodiesel). For both types of fuel, easily extractible parts of plants are used, such as starch-rich corn kernels, grains or the sugar in canes; for biodiesel, oilseeds are used. The residues of the plants are not utilized.
  • 'second generation' biofuels can use a far wider range of feedstocks, including biomass waste streams that are rich in lignin and cellulose, such as wheat straw, grass, or wood. In order to breakdown this biomass, two different processes are currently used: (1) the first one, a biochemical conversion technique, consists of using specialty enzymes that succeed in breaking down the ligno-cellulose and release the sugars, which can then be fermented into alcohol. This technology is best known as 'cellulosic ethanol' and will become efficient and cost-effective over the coming years, many hope. (2) The second technique, a thermochemical process (often called 'biomass-to-liquids'), relies on gasification, and consists of using high temperatures to turn biomass into a synthetic gas ('syngas'), consisting mainly of carbon monoxide and hydrogen. This gas can further be processed into different types of liquid fuel via Fischer-Tropsch synthesis. Fuels from this route are then called 'synthetic biofuels'. Alternatively, the syngas can be converted into hydrogen.
  • 'third generation' biofuels rely on biotechnological interventions in the feedstocks themselves. Plants are engineered in such a way that the structural building blocks of their cells (lignin, cellulose, hemicellulose), can be managed according to a specific task they are required to perform. For example, plant scientists are working on developing trees that grow normally, but that can be triggered to change the strength of the cell walls so that breaking them down to release sugars is more easy. In third generation biofuels, a synergy between this kind of interventions and processing steps is then created: plants with special properties are broken down by functionally engineered enzymes.
The latter generation of biofuels is only gradually being explored. But the second one is receiving full attention and research funds. Of this type of biofuels, the biochemical conversion route - using specialty enzymes and micro-organisms - has received most attention. But the thermochemical route - biomass gasification and synthesis into liquid fuels - has become equally important (see picture, click to enlarge).

Testifying to this, is the U.S. government's US$385 million worth of grants announced last week (earlier post) and distributed amongst six companies. Mainstream media did not take not of the surprising fact that half of the six projects chosen will use this thermochemical process, which was first discovered almost a century ago to turn coal into a gas:
:: :: :: :: :: :: :: :: :: ::

Long hailed as a more environmentally friendly way to turn coal into electricity, the gasification process might provide a faster and eventually cheaper way to produce ethanol from a variety of renewable sources collectively known as biomass, some scientists say.

For corn-based ethanol plants, the process of producing ethanol is as simple as brewing beer: sugars are extracted from the corn kernels and then enzymes are added to ferment it into alcohol. But biomass feedstocks don't easily give up their starches, so more expensive steps are needed to ferment cellulose in high-pressure chambers that have limited amounts of oxygen, according to Lanny Schmidt, a University of Minnesota chemical engineer.

Energy Secretary Samuel Bodman pegged the current cost of gasification as being about twice as much as the average $1.10 per gallon cost at corn-based ethanol plants.

A gasifier turns plant material into a synthesis gas consisting mostly of carbon monoxide and hydrogen. The "syngas" then could be turned into a variety of fuels including ethanol, hydrogen and environmentally friendly versions of diesel or gasoline, Schmidt said.

"These gasifiers are some high-tech stuff with high pressures and some more complexities," he said. "But they're probably more versatile at the end of the day to modify them as the demand and supplies change."

Gasification is a fairly simple process, based on chemistry developed in the 1920s, said Robert Brown, an Iowa State University chemical engineering professor and director of the school's Office of Biorenewables Programs.

The syngas produced during gasification mixes more readily with chemical catalysts, so it could be more easily turned into other fuels, chemicals and materials. Just add steam and you could produce hydrogen to power a fuel-cell vehicle, Brown said.

Of the six companies awarded U.S. Department of Energy grants, three will use versions of fermentation technology. But two others will use gasification and one will use a hybrid of both technologies:

  • Alico Inc., a LaBelle, Fla.-based agribusiness company, would get up to $33 million to turn yard waste, wood waste and citrus peel into syngas, which would then be converted into ethanol, electricity and hydrogen.
  • Range Fuels Inc., of Broomfield, Colo., would get up to $76 million for a plant near Soperton, Ga., to convert timber scraps into syngas to make ethanol and methanol.
  • Abengoa Bioenergy, a St. Louis-based division of Spain's Abengoa SA, would receive up to $76 million for an 11.4 million gallons-per-year plant in Colwich, Kan., that would use both biochemical and thermochemical processes to convert corn stalks, wheat straw and switchgrass.

The Energy Department helped demonstrate the viability of gasification in the mid-1990s when it awarded Georgia-based FERCO $9.2 million to help build a power plant running on wood chips. By 2001, the $18 million plant in Burlington, Vt., was generating more than 200 megawatt-hours of electricity a day.

To compete in the marketplace, companies will have to make sure their feedstock supplies are consistent, do more research into catalysts that turn syngas into fuels, and develop better materials to contain the thermochemical reactions, according to the Energy Department.

The syngas would have to be cleaned and conditioned to remove contaminants, which is an expensive task. Energy officials say companies will have to bring down those costs if they're to compete in the market.

Mark Paster, a U.S. Department of Energy technology development manager who's studying ways to turn biomass into hydrogen, said both fermentation and gasification "are very viable and both routes continue to be researched and developed."

Paster said biomass helps reduce greenhouse gasses, so any method that can reach commercial viability will be better than one based on fossil fuel.

"There may not be a single winner, just like there's no winner in how we produce electricity," he said. "We do it in a variety of ways."


Post a Comment

Links to this post:

Create a Link

<< Home