Renault and Saab at the International Agricultural Show: biofuels most effective in cutting CO2
Two leading car manufacturers will be present at the International Agricultural Show in Paris (March 3-11, 2007), one of the largest fairs in its kind. French car maker Renault and Swedish manufacturer Saab will showcase their biofuel capable vehicles at fair's section on 'Cultures et filières végétales' [*.pdf French], where biofuels are highlighted.
Saab will present its 9-5 'Biopower', a car that has enjoyed a runaway success in Europe, responsible for the manufacturer's record sales in 2006 (earlier post). Saab has meanwhile developed a version of the Biopower capable of running on pure ethanol.
Renault's participation will highlight its active involvement in the development of biofuel-related technologies with the display of an E85 bioethanol Mégane (pictured) alongside one of its B30 biodiesel-compatible engines, the 1.5 dCi 85hp.
Renault considers biofuels to be the most realistic, effective and economical solution for curbing CO2 emissions in the medium term. Produced from vegetable matter, they represent a diversified renewable energy source capable of diminishing our dependence on fossil fuels.
Growing experience with biofuel technologies
This spring, Renault is poised to launch a Mégane powered by an E85 bioethanol fuelled 1.6 16V 110hp engine, the brand's first bioethanol vehicle in Europe. Derived from existing powerplants in the range, such bioethanol engines require specific development to permit them to run on different types of fuel (petrol or E85 ethanol).
The principal differences concern the fuel system as a whole and the injection system (injectors, sparkplugs, ECU), as well as the pistons, valves and valve seats. Based on experience acquired since 2004 in Brazil, where it sells models functioning on E100 bioethanol, Renault anticipates that "50 per cent of its petrol-engined vehicles on sale in Europe will be able to run on a blend of petrol and up to 85 per cent of ethanol by 2009."
Since late 2006, Renault has sold B30 biodiesel-compatible versions of Trafic 2.0 dCi and Master 2.5 dCi. Aimed principally at companies operating large fleets and equipped with a specific pump, these vehicles cost the same as the equivalent conventional diesel-powered versions. They are also the first concrete examples of the pledge incorporated in Renault Commitment 2009 that "all the diesel engines in the range will be capable of running with 30 per cent biodiesel by 2009." The diesel 1.5 dCi 85hp engine displayed on the stand illustrates how these developments can be carried over to the world of passenger cars.
One of the objectives set out in Renault's "Commitment 2009" is to go even further by selling 1 million vehicles by 2008 that emit less than 140g of CO2 per km, including one-third that emit less than 120g/km. This would fall within the aims of the European Commission's target (earlier post):
biomass :: bioenergy :: biofuels :: energy :: sustainability :: ethanol :: biodiesel :: agriculture :: France ::
An educational approach to the importance of global warming-related issues Informing the public and enhancing its awareness of the stakes associated with global warming are seen as primordial to Renault's eyes. This necessity is addressed by a bid to explain and communicate the advantages of automotive biofuels in the fight against CO2 emissions.
Visitors to Renault's stand will be informed about the advantages of biofuels and how the industry functions. The benchmark biofuel for petrol-powered cars is bioethanol which is produced from a variety of sources – ranging from corn (USA) and sugar cane (Brazil) to beetroot and wheat (Europe) – depending on the region of the world. Diesel vehicles are fuelled by biodiesel which is produced from oleaginous plants (rapeseed, sunflower, soya, jatropha, palm oil, etc.).
Well-to-wheel pedagogy
Visitors will also be told of the value of biofuels through the so-called 'well-to-wheel' analysis which assesses the CO2 performance of different fuel types across their entire life cycle. In the case of B30 biodiesel, CO2 emissions are 20 per cent lower compared with a conventional diesel fuel and can be as much as 70 per cent lower in the case of E85 bioethanol (derived from sugar cane) compared with petrol. These differences are the result of the process of photosynthesis. While growing, plants absorb a quantity of the CO2 present in the atmosphere, a factor which partially compensates for emissions released during the fuel's production and combustion. This phenomenon does not apply in the case of conventional fuels.
Moreover, just as it did during the 2006 Paris Motor Show, Renault will be giving away 20,000 free copies of its flash card-style 'Incollables' game. This educational tool was developed in association with France's Agence de l’environnement et de maîtrise de l’énergie (ADEME, or Agency for the Environment and Energy Management) and has been designed to inform and enhance awareness of environmental protection issues in the form of a quiz.
Saab will present its 9-5 'Biopower', a car that has enjoyed a runaway success in Europe, responsible for the manufacturer's record sales in 2006 (earlier post). Saab has meanwhile developed a version of the Biopower capable of running on pure ethanol.
Renault's participation will highlight its active involvement in the development of biofuel-related technologies with the display of an E85 bioethanol Mégane (pictured) alongside one of its B30 biodiesel-compatible engines, the 1.5 dCi 85hp.
Renault considers biofuels to be the most realistic, effective and economical solution for curbing CO2 emissions in the medium term. Produced from vegetable matter, they represent a diversified renewable energy source capable of diminishing our dependence on fossil fuels.
Growing experience with biofuel technologies
This spring, Renault is poised to launch a Mégane powered by an E85 bioethanol fuelled 1.6 16V 110hp engine, the brand's first bioethanol vehicle in Europe. Derived from existing powerplants in the range, such bioethanol engines require specific development to permit them to run on different types of fuel (petrol or E85 ethanol).
The principal differences concern the fuel system as a whole and the injection system (injectors, sparkplugs, ECU), as well as the pistons, valves and valve seats. Based on experience acquired since 2004 in Brazil, where it sells models functioning on E100 bioethanol, Renault anticipates that "50 per cent of its petrol-engined vehicles on sale in Europe will be able to run on a blend of petrol and up to 85 per cent of ethanol by 2009."
Since late 2006, Renault has sold B30 biodiesel-compatible versions of Trafic 2.0 dCi and Master 2.5 dCi. Aimed principally at companies operating large fleets and equipped with a specific pump, these vehicles cost the same as the equivalent conventional diesel-powered versions. They are also the first concrete examples of the pledge incorporated in Renault Commitment 2009 that "all the diesel engines in the range will be capable of running with 30 per cent biodiesel by 2009." The diesel 1.5 dCi 85hp engine displayed on the stand illustrates how these developments can be carried over to the world of passenger cars.
One of the objectives set out in Renault's "Commitment 2009" is to go even further by selling 1 million vehicles by 2008 that emit less than 140g of CO2 per km, including one-third that emit less than 120g/km. This would fall within the aims of the European Commission's target (earlier post):
biomass :: bioenergy :: biofuels :: energy :: sustainability :: ethanol :: biodiesel :: agriculture :: France ::
An educational approach to the importance of global warming-related issues Informing the public and enhancing its awareness of the stakes associated with global warming are seen as primordial to Renault's eyes. This necessity is addressed by a bid to explain and communicate the advantages of automotive biofuels in the fight against CO2 emissions.
Visitors to Renault's stand will be informed about the advantages of biofuels and how the industry functions. The benchmark biofuel for petrol-powered cars is bioethanol which is produced from a variety of sources – ranging from corn (USA) and sugar cane (Brazil) to beetroot and wheat (Europe) – depending on the region of the world. Diesel vehicles are fuelled by biodiesel which is produced from oleaginous plants (rapeseed, sunflower, soya, jatropha, palm oil, etc.).
Well-to-wheel pedagogy
Visitors will also be told of the value of biofuels through the so-called 'well-to-wheel' analysis which assesses the CO2 performance of different fuel types across their entire life cycle. In the case of B30 biodiesel, CO2 emissions are 20 per cent lower compared with a conventional diesel fuel and can be as much as 70 per cent lower in the case of E85 bioethanol (derived from sugar cane) compared with petrol. These differences are the result of the process of photosynthesis. While growing, plants absorb a quantity of the CO2 present in the atmosphere, a factor which partially compensates for emissions released during the fuel's production and combustion. This phenomenon does not apply in the case of conventional fuels.
Moreover, just as it did during the 2006 Paris Motor Show, Renault will be giving away 20,000 free copies of its flash card-style 'Incollables' game. This educational tool was developed in association with France's Agence de l’environnement et de maîtrise de l’énergie (ADEME, or Agency for the Environment and Energy Management) and has been designed to inform and enhance awareness of environmental protection issues in the form of a quiz.
0 Comments:
Post a Comment
Links to this post:
Create a Link
<< Home