<body> -------------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    Spanish company Ferry Group is to invest €42/US$55.2 million in a project for the production of biomass fuel pellets in Bulgaria. The 3-year project consists of establishing plantations of paulownia trees near the city of Tran. Paulownia is a fast-growing tree used for the commercial production of fuel pellets. Dnevnik - Feb. 20, 2007.

    Hungary's BHD Hõerõmû Zrt. is to build a 35 billion Forint (€138/US$182 million) commercial biomass-fired power plant with a maximum output of 49.9 MW in Szerencs (northeast Hungary). Portfolio.hu - Feb. 20, 2007.

    Tonight at 9pm, BBC Two will be showing a program on geo-engineering techniques to 'save' the planet from global warming. Five of the world's top scientists propose five radical scientific inventions which could stop climate change dead in its tracks. The ideas include: a giant sunshade in space to filter out the sun's rays and help cool us down; forests of artificial trees that would breath in carbon dioxide and stop the green house effect and a fleet futuristic yachts that will shoot salt water into the clouds thickening them and cooling the planet. BBC News - Feb. 19, 2007.

    Archer Daniels Midland, the largest U.S. ethanol producer, is planning to open a biodiesel plant in Indonesia with Wilmar International Ltd. this year and a wholly owned biodiesel plant in Brazil before July, the Wall Street Journal reported on Thursday. The Brazil plant is expected to be the nation's largest, the paper said. Worldwide, the company projects a fourfold rise in biodiesel production over the next five years. ADM was not immediately available to comment. Reuters - Feb. 16, 2007.

    Finnish engineering firm Pöyry Oyj has been awarded contracts by San Carlos Bioenergy Inc. to provide services for the first bioethanol plant in the Philippines. The aggregate contract value is EUR 10 million. The plant is to be build in the Province of San Carlos on the north-eastern tip of Negros Island. The plant is expected to deliver 120,000 liters/day of bioethanol and 4 MW of excess power to the grid. Kauppalehti Online - Feb. 15, 2007.

    In order to reduce fuel costs, a Mukono-based flower farm which exports to Europe, is building its own biodiesel plant, based on using Jatropha curcas seeds. It estimates the fuel will cut production costs by up to 20%. New Vision (Kampala, Uganda) - Feb. 12, 2007.

    The Tokyo Metropolitan Government has decided to use 10% biodiesel in its fleet of public buses. The world's largest city is served by the Toei Bus System, which is used by some 570,000 people daily. Digital World Tokyo - Feb. 12, 2007.

    Fearing lack of electricity supply in South Africa and a price tag on CO2, WSP Group SA is investing in a biomass power plant that will replace coal in the Letaba Citrus juicing plant which is located in Tzaneen. Mining Weekly - Feb. 8, 2007.

    In what it calls an important addition to its global R&D capabilities, Archer Daniels Midland (ADM) is to build a new bioenergy research center in Hamburg, Germany. World Grain - Feb. 5, 2007.

    EthaBlog's Henrique Oliveira interviews leading Brazilian biofuels consultant Marcelo Coelho who offers insights into the (foreign) investment dynamics in the sector, the history of Brazilian ethanol and the relationship between oil price trends and biofuels. EthaBlog - Feb. 2, 2007.

    The government of Taiwan has announced its renewable energy target: 12% of all energy should come from renewables by 2020. The plan is expected to revitalise Taiwan's agricultural sector and to boost its nascent biomass industry. China Post - Feb. 2, 2007.

    Production at Cantarell, the world's second biggest oil field, declined by 500,000 barrels or 25% last year. This virtual collapse is unfolding much faster than projections from Mexico's state-run oil giant Petroleos Mexicanos. Wall Street Journal - Jan. 30, 2007.

    Dubai-based and AIM listed Teejori Ltd. has entered into an agreement to invest €6 million to acquire a 16.7% interest in Bekon, which developed two proprietary technologies enabling dry-fermentation of biomass. Both technologies allow it to design, establish and operate biogas plants in a highly efficient way. Dry-Fermentation offers significant advantages to the existing widely used wet fermentation process of converting biomass to biogas. Ame Info - Jan. 22, 2007.

    Hindustan Petroleum Corporation Limited is to build a biofuel production plant in the tribal belt of Banswara, Rajasthan, India. The petroleum company has acquired 20,000 hectares of low value land in the district, which it plans to commit to growing jatropha and other biofuel crops. The company's chairman said HPCL was also looking for similar wasteland in the state of Chhattisgarh. Zee News - Jan. 15, 2007.

    The Zimbabwean national police begins planting jatropha for a pilot project that must result in a daily production of 1000 liters of biodiesel. The Herald (Harare), Via AllAfrica - Jan. 12, 2007.

    In order to meet its Kyoto obligations and to cut dependence on oil, Japan has started importing biofuels from Brazil and elsewhere. And even though the country has limited local bioenergy potential, its Agriculture Ministry will begin a search for natural resources, including farm products and their residues, that can be used to make biofuels in Japan. To this end, studies will be conducted at 900 locations nationwide over a three-year period. The Japan Times - Jan. 12, 2007.

    Chrysler's chief economist Van Jolissaint has launched an arrogant attack on "quasi-hysterical Europeans" and their attitudes to global warming, calling the Stern Review 'dubious'. The remarks illustrate the yawning gap between opinions on climate change among Europeans and Americans, but they also strengthen the view that announcements by US car makers and legislators about the development of green vehicles are nothing more than window dressing. Today, the EU announced its comprehensive energy policy for the 21st century, with climate change at the center of it. BBC News - Jan. 10, 2007.

    The new Canadian government is investing $840,000 into BioMatera Inc. a biotech company that develops industrial biopolymers (such as PHA) that have wide-scale applications in the plastics, farmaceutical and cosmetics industries. Plant-based biopolymers such as PHA are biodegradable and renewable. Government of Canada - Jan. 9, 2007.


Creative Commons License


Monday, February 26, 2007

Plant scientists develop new tool to protect crops from modified genes

In a development of major importance for the future of the biobased economy, plant biologists at the University of Connecticut have created a tool that may help alleviate public concerns surrounding genetically-modified plants. Controlling the flow of transgenic genes into the wild via pollen and seeds has been a huge concern to the public and a major challenge for scientists specializing in agricultural biotechnology.

The tool, called a “GM-gene-deletor,” could prevent genetically-modified gene flow into non-biotech crops or weeds. The invention may be particularly useful to confine genetically altered genes used in vegetatively propagated, undomesticated bioenergy crops, such as switchgrass, sugarcane, tropical grass species and energy trees such as poplar, willow, acacia or eucalyptus.

Most importantly, it overcomes the problems with so-called 'terminator seeds', which have made poor farmers in the developing world dependent on multinationals, from which they have to buy new seeds every season. Traditionally, farmers use the seeds from their harvested crops to grow new plants the next season. But 'terminator technology' used in GM-crops kills the fertility of these seeds, forcing the farmer to buy new ones over and over again, thus creating a total dependency. The GM-gene-deleter may now make it possible for farmers in the developing world to become full owners of high-yield, pest-, disease- and drought-tolerant energy crops, which do not spread their altered genes into the environment and the seeds of which can be used to grow new crops. This independence from large multinationals may overcome the devastating effects of the current situation, as it was recently outlined in an interesting anthropological study of farmers in Warangal, India (earlier post).

The technology, developed in the laboratory of Yi Li, associate professor of plant science, provides a successful method for eliminating all the transgenic genes from pollen and seeds if needed. The research is published in the March issue of Plant Biotechnology Journal [abstract].

According to Yi Li, the GM-gene-deletor technology could allow farmers to produce non-genetically modified consumer products, such as seeds, fruits, and flowers, from transgenic plants. Likewise, with the advent of the bioeconomy, useful elements of plants could be developed that do not carry the genetical alterations, but that can be used as feedstocks for the production of green specialty chemicals, plastics and fuels:
:: :: :: :: :: :: :: :: :: :: :: :: :: ::

“For example, herbicide-resistant genetically-modified traits are primarily needed to protect crops during growth prior to seed or fruit development. The GM-gene-deletor could initiate the gene deletion process immediately prior to seed or fruit development. That way, farmers would get the benefit of the added crop protection during a critical growth stage, without the unintended consequence of an uncontrolled spread of a herbicide-resistant gene, which some believe could create ‘super weeds.’”

The GM-gene-deletor also could be used in crops that are genetically modified for the production of pharmaceuticals to block the accidental transmission of these traits into food crops through seed or pollen.

Terminator seeds
The new technology also holds the potential to end a long-standing debate on so-called “terminator” gene or “terminator” seed technology that has pitted major agricultural biotechnology companies against poor farmers in developing countries.

The terminator technology inserts terminator or suicidal genes into genetically-modified seeds to ensure that no genes from genetically-modified crops contaminate non-genetically-modified crops.

This process protects the companies’ patents and could alleviate some of the same consumer concerns Li’s technology addresses, but at the expense of poor farmers in developing countries, who would have to buy fresh seeds every year because the terminator gene system renders the genetically modified plants sterile.

The terminator technology has yet to be commercialized because of the problems it poses for farmers in developing countries.

“With our technology,” says Hui Duan, one of Li’s former doctoral students and a co-author of the published research, “the seeds the farmers save will not have genetically-modified traits. The farmers would need to buy new seeds each year if they want the crops to have genetically-modified traits such as insect resistance or herbicide resistance. But if they did not want to do so or could not afford to do so, they would still be left with viable seeds to replant.”

Li’s group at UConn started this project in 2000 with funding from Connecticut Innovation Inc., the Consortium for Plant Biotechnology Research / U.S. Department of Energy, and UConn.

The team, and collaborators in China and at the University of Tennessee, reported a novel use of two site-specific DNA recombination systems to assemble a highly efficient gene eliminator that specifically targets the foreign genes.

By incorporating these systems into the genome of the genetically-modified plants, the scientists found the undesirable genes were removed from the pollen and seeds of the plant with as much as 100 percent efficiency.

Because of the exceptionally high deletion efficiency observed in the experimental plants, Li and his collaborators anticipate enormous potential for the technology to be used in large-scale plantings of agricultural crops, as well as genetically improved trees and bio-energy/bio-fuel and pulp-generating plant species.


0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home