<body> -------------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive » Bioeconomy
Nature Blog Network

    Spanish company Ferry Group is to invest €42/US$55.2 million in a project for the production of biomass fuel pellets in Bulgaria. The 3-year project consists of establishing plantations of paulownia trees near the city of Tran. Paulownia is a fast-growing tree used for the commercial production of fuel pellets. Dnevnik - Feb. 20, 2007.

    Hungary's BHD Hõerõmû Zrt. is to build a 35 billion Forint (€138/US$182 million) commercial biomass-fired power plant with a maximum output of 49.9 MW in Szerencs (northeast Hungary). Portfolio.hu - Feb. 20, 2007.

    Tonight at 9pm, BBC Two will be showing a program on geo-engineering techniques to 'save' the planet from global warming. Five of the world's top scientists propose five radical scientific inventions which could stop climate change dead in its tracks. The ideas include: a giant sunshade in space to filter out the sun's rays and help cool us down; forests of artificial trees that would breath in carbon dioxide and stop the green house effect and a fleet futuristic yachts that will shoot salt water into the clouds thickening them and cooling the planet. BBC News - Feb. 19, 2007.

    Archer Daniels Midland, the largest U.S. ethanol producer, is planning to open a biodiesel plant in Indonesia with Wilmar International Ltd. this year and a wholly owned biodiesel plant in Brazil before July, the Wall Street Journal reported on Thursday. The Brazil plant is expected to be the nation's largest, the paper said. Worldwide, the company projects a fourfold rise in biodiesel production over the next five years. ADM was not immediately available to comment. Reuters - Feb. 16, 2007.

    Finnish engineering firm Pöyry Oyj has been awarded contracts by San Carlos Bioenergy Inc. to provide services for the first bioethanol plant in the Philippines. The aggregate contract value is EUR 10 million. The plant is to be build in the Province of San Carlos on the north-eastern tip of Negros Island. The plant is expected to deliver 120,000 liters/day of bioethanol and 4 MW of excess power to the grid. Kauppalehti Online - Feb. 15, 2007.

    In order to reduce fuel costs, a Mukono-based flower farm which exports to Europe, is building its own biodiesel plant, based on using Jatropha curcas seeds. It estimates the fuel will cut production costs by up to 20%. New Vision (Kampala, Uganda) - Feb. 12, 2007.

    The Tokyo Metropolitan Government has decided to use 10% biodiesel in its fleet of public buses. The world's largest city is served by the Toei Bus System, which is used by some 570,000 people daily. Digital World Tokyo - Feb. 12, 2007.

    Fearing lack of electricity supply in South Africa and a price tag on CO2, WSP Group SA is investing in a biomass power plant that will replace coal in the Letaba Citrus juicing plant which is located in Tzaneen. Mining Weekly - Feb. 8, 2007.

    In what it calls an important addition to its global R&D capabilities, Archer Daniels Midland (ADM) is to build a new bioenergy research center in Hamburg, Germany. World Grain - Feb. 5, 2007.

    EthaBlog's Henrique Oliveira interviews leading Brazilian biofuels consultant Marcelo Coelho who offers insights into the (foreign) investment dynamics in the sector, the history of Brazilian ethanol and the relationship between oil price trends and biofuels. EthaBlog - Feb. 2, 2007.

    The government of Taiwan has announced its renewable energy target: 12% of all energy should come from renewables by 2020. The plan is expected to revitalise Taiwan's agricultural sector and to boost its nascent biomass industry. China Post - Feb. 2, 2007.

    Production at Cantarell, the world's second biggest oil field, declined by 500,000 barrels or 25% last year. This virtual collapse is unfolding much faster than projections from Mexico's state-run oil giant Petroleos Mexicanos. Wall Street Journal - Jan. 30, 2007.

    Dubai-based and AIM listed Teejori Ltd. has entered into an agreement to invest €6 million to acquire a 16.7% interest in Bekon, which developed two proprietary technologies enabling dry-fermentation of biomass. Both technologies allow it to design, establish and operate biogas plants in a highly efficient way. Dry-Fermentation offers significant advantages to the existing widely used wet fermentation process of converting biomass to biogas. Ame Info - Jan. 22, 2007.

    Hindustan Petroleum Corporation Limited is to build a biofuel production plant in the tribal belt of Banswara, Rajasthan, India. The petroleum company has acquired 20,000 hectares of low value land in the district, which it plans to commit to growing jatropha and other biofuel crops. The company's chairman said HPCL was also looking for similar wasteland in the state of Chhattisgarh. Zee News - Jan. 15, 2007.

    The Zimbabwean national police begins planting jatropha for a pilot project that must result in a daily production of 1000 liters of biodiesel. The Herald (Harare), Via AllAfrica - Jan. 12, 2007.

    In order to meet its Kyoto obligations and to cut dependence on oil, Japan has started importing biofuels from Brazil and elsewhere. And even though the country has limited local bioenergy potential, its Agriculture Ministry will begin a search for natural resources, including farm products and their residues, that can be used to make biofuels in Japan. To this end, studies will be conducted at 900 locations nationwide over a three-year period. The Japan Times - Jan. 12, 2007.

    Chrysler's chief economist Van Jolissaint has launched an arrogant attack on "quasi-hysterical Europeans" and their attitudes to global warming, calling the Stern Review 'dubious'. The remarks illustrate the yawning gap between opinions on climate change among Europeans and Americans, but they also strengthen the view that announcements by US car makers and legislators about the development of green vehicles are nothing more than window dressing. Today, the EU announced its comprehensive energy policy for the 21st century, with climate change at the center of it. BBC News - Jan. 10, 2007.

    The new Canadian government is investing $840,000 into BioMatera Inc. a biotech company that develops industrial biopolymers (such as PHA) that have wide-scale applications in the plastics, farmaceutical and cosmetics industries. Plant-based biopolymers such as PHA are biodegradable and renewable. Government of Canada - Jan. 9, 2007.

Creative Commons License

Tuesday, October 31, 2006

The green nanotech revolution: apricot kernels and cashew nuts to replace petrochemicals

Apricot kernels and cashew nuts. We have been eating these delicacies in large quantities for decades. But who would have thought they would one day become the object of interest for nanotechnologists and biochemists looking to use them as renewable and biodegradable substitutes for petrochemicals?

The use of renewable biomass as an alternate source for fuel and the production of valuable chemicals is becoming a topic of great interest and a driving force behind research into biorefinery concepts. In the early parts of the 20th century, most nonfuel industrial products such as medicines, paints, chemicals, dyes, and fibers were made from vegetables, plant and crops. During the 1970s, petroleum based organic chemicals had largely replaced those derived from plant materials, capturing more than 95% of the markets previously held by products from biological sources.

However, recent developments in biobased materials research show prospects that many petrochemical derived products can be replaced with industrial materials processed from renewable resources. Earlier we reported about some bioproducts with a large market potential, like the 100% petroleum-free tire, high-tech natural rubber flooring for hospitals, or bioplastics with embedded organic nanocrystals that are 3000 times stronger than their petroleum based rivals. The specialty chemicals market is even larger.

Some of these products result from the direct physical or chemical processing of biomass such as cellulose, starch, oils, protein, lignin and terpenes. To exploit the chemical diversity, scientists will need to gain more knowledge of the plant genes and regulating these biochemicals. Moreover, there is a vast source of biomaterials in the tropics, where exotic plants that could potentially serve as feedstocks for specialty chemicals are waiting to be discovered.

Researchers continue to make progress in research and development of new technologies that bring down the cost of processing plant matter into value-added products. Rising environmental concerns are also suggesting the use of agriculture and forestry resources as alternative feedstock. Being able to develop soft nanomaterials and fuel from biomass will have a direct impact on industrial applications and economically viable alternatives.

In a recent paper titled "Design and development of soft nanomaterials from biobased amphiphiles" Professor George John and Dr. Praveen Vemula present the novel and emerging concept of generating various forms of soft materials from renewable resources. In this account they summarize their continuing efforts in that direction, and a few successful examples from their work. In particular, they explain how one can design and develop soft nanomaterials such as new surfactants, molecular gels, liquid crystals, self-assembled organic nanotubes, twisted fibers and helices. Since these materials are well known for various applications, generating them from renewable resources could have a significant impact on production technologies and economies:
:: :: :: :: :: :: :: ::

John, who is Associate Professor in the Department of Chemistry at The City College of New York, explains his research efforts: "Intriguingly, by combining biocatalysis with principles of green and supramolecular chemistry, we developed building blocks-to-assembled materials. We foresee that our results will encourage interdisciplinary collaboration between scientists in the fields of organic synthesis, soft materials research, green chemistry and drug discovery to design and develop various biobased functional materials from underutilized plant/crop based renewable feedstocks."

In one example, John used cashew nut liquid, an industrial by-product, to synthesize cardanol-based glycolipids. These could be self-assembled to generate a variety of soft nanomaterials, such as helical fibers and tubes, gels and liquid crystals. John said the nanomaterials have a wide range of applications, such as smart gels for sensing, electro-optical displays, lubrication industry, cosmetic formulations, biomedical applications and oil recovery.

John points out that he and his colleagues already have published several articles on this new concept, combining the philosophies of green chemistry and principles of supramolecular chemistry, to generate nanoscale architectures and materials such as liquid crystals, gels, helical fibers and tubes (see: "Enzyme Catalysis: Tool to Make and Break Amygdalin Hydrogelators from Renewable Resources: A Delivery Model for Hydrophobic Drugs".

In another example, the researchers started with amygdalin, a by-product from the apricot industry and used an enzyme catalysis route to make amphiphiles – molecules with both hydrophilic and hydrophobic parts – that have very effective gelation properties, even before purification.

To take these soft materials to the next level, the researchers explored and successfully demonstrated the utility of these hydrogels as drug delivery vehicles. Enzyme catalysis was used as tool to make and break the hydrogels, which apparently triggered controlled drug delivery.

"This study at the molecular level facilitates the new developments in science and technology via nanotechnology" says John. "Our primary goal is to understand the structure-morphology correlation of amphiphiles on self-assembly and their uses in medicine, biosensing and environmental benign applications."

John is very optimistic about the prospects of this field: "As this budding field is in initial stage at present, we could foresee enormous potential and urgency for this approach due to significant decrease of petroleum resources. It suggests the need for alternate feedstock for developing fuel, nutraceuticals and other materials."
However, there are a few challenging hurdles to be overcome. One would be the development of a suitable process for extracting and separating starting chemicals from different bio resources. Most challenging would be the design of suitable building blocks including all basic functional arms in supramolecular synthons. Last but not least, it is equally important to design new chemical plants which could process oxygen containing renewables, unlike the present hydrocarbon intense process industry.

To continue on this route to using biomass on an industrial-scale, John believes there is an urgent need for education in the area of energy efficient sustainable chemistry, biomineralization and biomimetics. "Considerable input has to be involved to the most effective ways of introducing such materials into the chemical curriculum and to didactic expositions" he says.


Post a Comment

Links to this post:

Create a Link

<< Home