<body> -------------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive » Bioenergy_potential
Nature Blog Network

    Spanish company Ferry Group is to invest €42/US$55.2 million in a project for the production of biomass fuel pellets in Bulgaria. The 3-year project consists of establishing plantations of paulownia trees near the city of Tran. Paulownia is a fast-growing tree used for the commercial production of fuel pellets. Dnevnik - Feb. 20, 2007.

    Hungary's BHD Hõerõmû Zrt. is to build a 35 billion Forint (€138/US$182 million) commercial biomass-fired power plant with a maximum output of 49.9 MW in Szerencs (northeast Hungary). Portfolio.hu - Feb. 20, 2007.

    Tonight at 9pm, BBC Two will be showing a program on geo-engineering techniques to 'save' the planet from global warming. Five of the world's top scientists propose five radical scientific inventions which could stop climate change dead in its tracks. The ideas include: a giant sunshade in space to filter out the sun's rays and help cool us down; forests of artificial trees that would breath in carbon dioxide and stop the green house effect and a fleet futuristic yachts that will shoot salt water into the clouds thickening them and cooling the planet. BBC News - Feb. 19, 2007.

    Archer Daniels Midland, the largest U.S. ethanol producer, is planning to open a biodiesel plant in Indonesia with Wilmar International Ltd. this year and a wholly owned biodiesel plant in Brazil before July, the Wall Street Journal reported on Thursday. The Brazil plant is expected to be the nation's largest, the paper said. Worldwide, the company projects a fourfold rise in biodiesel production over the next five years. ADM was not immediately available to comment. Reuters - Feb. 16, 2007.

    Finnish engineering firm Pöyry Oyj has been awarded contracts by San Carlos Bioenergy Inc. to provide services for the first bioethanol plant in the Philippines. The aggregate contract value is EUR 10 million. The plant is to be build in the Province of San Carlos on the north-eastern tip of Negros Island. The plant is expected to deliver 120,000 liters/day of bioethanol and 4 MW of excess power to the grid. Kauppalehti Online - Feb. 15, 2007.

    In order to reduce fuel costs, a Mukono-based flower farm which exports to Europe, is building its own biodiesel plant, based on using Jatropha curcas seeds. It estimates the fuel will cut production costs by up to 20%. New Vision (Kampala, Uganda) - Feb. 12, 2007.

    The Tokyo Metropolitan Government has decided to use 10% biodiesel in its fleet of public buses. The world's largest city is served by the Toei Bus System, which is used by some 570,000 people daily. Digital World Tokyo - Feb. 12, 2007.

    Fearing lack of electricity supply in South Africa and a price tag on CO2, WSP Group SA is investing in a biomass power plant that will replace coal in the Letaba Citrus juicing plant which is located in Tzaneen. Mining Weekly - Feb. 8, 2007.

    In what it calls an important addition to its global R&D capabilities, Archer Daniels Midland (ADM) is to build a new bioenergy research center in Hamburg, Germany. World Grain - Feb. 5, 2007.

    EthaBlog's Henrique Oliveira interviews leading Brazilian biofuels consultant Marcelo Coelho who offers insights into the (foreign) investment dynamics in the sector, the history of Brazilian ethanol and the relationship between oil price trends and biofuels. EthaBlog - Feb. 2, 2007.

    The government of Taiwan has announced its renewable energy target: 12% of all energy should come from renewables by 2020. The plan is expected to revitalise Taiwan's agricultural sector and to boost its nascent biomass industry. China Post - Feb. 2, 2007.

    Production at Cantarell, the world's second biggest oil field, declined by 500,000 barrels or 25% last year. This virtual collapse is unfolding much faster than projections from Mexico's state-run oil giant Petroleos Mexicanos. Wall Street Journal - Jan. 30, 2007.

    Dubai-based and AIM listed Teejori Ltd. has entered into an agreement to invest €6 million to acquire a 16.7% interest in Bekon, which developed two proprietary technologies enabling dry-fermentation of biomass. Both technologies allow it to design, establish and operate biogas plants in a highly efficient way. Dry-Fermentation offers significant advantages to the existing widely used wet fermentation process of converting biomass to biogas. Ame Info - Jan. 22, 2007.

    Hindustan Petroleum Corporation Limited is to build a biofuel production plant in the tribal belt of Banswara, Rajasthan, India. The petroleum company has acquired 20,000 hectares of low value land in the district, which it plans to commit to growing jatropha and other biofuel crops. The company's chairman said HPCL was also looking for similar wasteland in the state of Chhattisgarh. Zee News - Jan. 15, 2007.

    The Zimbabwean national police begins planting jatropha for a pilot project that must result in a daily production of 1000 liters of biodiesel. The Herald (Harare), Via AllAfrica - Jan. 12, 2007.

    In order to meet its Kyoto obligations and to cut dependence on oil, Japan has started importing biofuels from Brazil and elsewhere. And even though the country has limited local bioenergy potential, its Agriculture Ministry will begin a search for natural resources, including farm products and their residues, that can be used to make biofuels in Japan. To this end, studies will be conducted at 900 locations nationwide over a three-year period. The Japan Times - Jan. 12, 2007.

    Chrysler's chief economist Van Jolissaint has launched an arrogant attack on "quasi-hysterical Europeans" and their attitudes to global warming, calling the Stern Review 'dubious'. The remarks illustrate the yawning gap between opinions on climate change among Europeans and Americans, but they also strengthen the view that announcements by US car makers and legislators about the development of green vehicles are nothing more than window dressing. Today, the EU announced its comprehensive energy policy for the 21st century, with climate change at the center of it. BBC News - Jan. 10, 2007.

    The new Canadian government is investing $840,000 into BioMatera Inc. a biotech company that develops industrial biopolymers (such as PHA) that have wide-scale applications in the plastics, farmaceutical and cosmetics industries. Plant-based biopolymers such as PHA are biodegradable and renewable. Government of Canada - Jan. 9, 2007.

Creative Commons License

Monday, September 04, 2006

Energy to produce biofuels, from the world's largest dam

This is part two of our series on Africa's natural resource conflicts and on how the biorevolution could change the way these resources are used (part one). In this essay, Laurens Rademakers looks at an 'energy secret' hidden deep in one of Africa's largest and least well-known countries, the Democratic Republic of the Congo.

Whenever we hear about the Democratic Republic of Congo, formerly known as Zaire, we read superlatives: the country has huge reserves of mineral wealth (gold, diamond, coltan, copper, uranium...), its vast land resources could make it the breadbasket of Central Africa, the country's main river, the Congo, is the second biggest on earth, hosting the second largest pristine rainforest after the Amazon, and when it comes to politics, the country has been in the hands of ruthless dictators for more than 3 decades. In Congo, everything is big, and so are the country's problems.

Congo just came out of a bloody and underreported resource war which killed 4 million people, more than in any other conflict since the Second World War. After a cumbersome and complex transitional peace process, the country recently held its first democratic elections, which went smoothly, to the great relief of the UN and the international community (the country hosts the largest UN peacekeeping force, and the elections in the vast country were the most difficult the international community has ever had to organise.)

The Congolese now hope that the elections are a sign of a new era. One that will bring prosperity and stability, one that will exorcise the demons of the past and open a future where the Congolese are in control of their own destiny. Potentially, Congo could be one of the wealthiest nations in the global South, so the optimism is not entirely unfounded. But the tasks ahead are enormous. The State has to be reorganised, its infrastructure has to be rebuilt, social and health care systems have to be created, corruption has to be rooted out, hospitals, schools and universities have to be created, rebel factions have to be reintegrated into society... the list of things to revive, to rebuild and to reorganise is endless.

However, there is one resource that has been lying around, dormant and untouched for all these years, and it could be used to the great benefit of Congo's development in a relatively short time. In order for it to work, enormous investment is required though. But states, multinationals and world banks have been eyeing it for decades, and the plans are ready, the feasibility studies have been carried out, it's only a matter of getting together and working it. We are talking about the exploitation of the Congo river's vast energy potential, as it can be seen at the Inga Dams.

Bigger than the Three Gorges and the Itaipu combined
When the vast Congo river passes the capital Kinshasa and makes its way from the inland plateau to the Atlantic Ocean, the river rapidly descends over a short stretch. Some 150 kilometres from the coast, a series of rapids called les barrages d'Inga form a huge reservoir with a natural head of 150 metres (see picture). It is at this point where the potential for a hydroelectric complex of dams can be found. Back in the 1970s, dictator Mobutu already built a first series of small dams called "Inga I" with a capacity of 351MW, delivering 2400GWh of electricity per year. A decade later, "Inga II" was commissioned consisting of 8 units with a combined capacity of 1424MW and capability of 10,400GWh per year.

But it is the potential of Inga III and of the "Grand Inga" that has attracted attention. Combined, the projects have a hard to imagine total capacity of 42,000MW, making it the world's largest hydroelectric potential. Just think of what this means: the gigantic Three Gorges Dam in China, the world's largest, has a total capacity of 18,200MW; the world's second largest dam, the Itaipu on the Parana river located on the border between Brazil and Paraguay, has a capacity of 14,000MW. The Grand Inga would be bigger than both combined, and one can add two Grand Coulees to make up the total. Put differently, the Inga dams could provide more energy than 40 large nuclear power plants, more than 100 modern coal plants.

(See large map with statistics, here)

According to the United Nations Environment Program (UNEP), the Inga dams can, in principle, power the entire African continent and even export excess electricity to Europe. Projections show that the Grand Inga can lift Congo's 55 million people out of poverty all by itself. Investors such as South Africa's power company Eskom and the World Bank are ready to jump on the project, provided political stability reigns in the country.

Energy to mass-produce biofuels
But what does Inga's tantalizing potential have to do with biofuels and bioenergy? And why refer to a mega-project that has spun the heads of more than one megalomaniac, when otherwise the logic behind the biofuture is one of small-scale, localised and decentralised projects driving bottom-up approaches to development? The link is easy to understand:

:: :: :: :: :: :: :: :: ::

First of all, the production of biofuels itself is energy intensive. In order to convert biomass into a high energy density liquid or gaseous fuel that can be used in vehicles, energy is required (either for distillation, transesterification, pyrolysis or gasification). Often, biomass residues are used to power this proces, as is the case in Brazil's ethanol industry, where distilleries are powered by bagasse (fibrous cane residue).
Critics have often pointed to the fact that some first generation biofuels, such as corn-ethanol, have a negative 'energy return on energy invested' (EROEI). They suggest that it takes more energy to plant, harvest and convert biomass, than you get out of the biofuel. Now for tropical energy crops, the energy balance is very positive (for sugar cane it is around 8, oil palm comes close to 12), but energy inputs remain an important cost factor.

Now it is not difficult to see where the Inga comes in. The cheap and abundant electricity from the huge dam complex could power a vast cluster of biofuel plants located nearby, that use biomass that was produced further in land, to make liquid biofuels ready for export.

A futuristic scenario
We have looked at the Congo's geography and infrastructure, and it is not unthinkable to see the following scenario develop in the near future: biomass from the country's vast inland production zones would be densified in decentralised plants, located alongside the Congo river. From there, the intermediate feedstocks are transported over the Congo to the capital Kinshasa, where rail would bring them to the port of Matadi. In that city, near the Atlantic Ocean, bioterminals and processing plants could be located, using the cheap and abundant electricity from the nearby Inga Dams.

In order to attract investments to realize the potential of the Inga Dams, a viable and large-scale industry would have to be in place, preferrably one that forms a synergy based on using raw materials coming from Congo itself. In previous decades, the idea was to use the Inga electricity to power the mining operations in Congo, but that would require a vast grid because the mining resources are located thousands of kilometres away from the dam, in the South-West of the country. Such an infrastructure was built, but has since decayed.

A biofuels industry would overcome this problem, as processing clusters and bioterminals aimed at exporting biofuels to the wider world could be located close-by. The exploitation of Congo's agricultural potential for the production of biofuels could thus be one step closer, because the problem of energy inputs has been solved.

Now this might all sound megalomaniacal, but there are some signs that tell us things might indeed go the way we sketched them here. The port of Antwerp, in Belgium (Congo's former colonial ruler) has recently announced that it will help build the harbors of Matadi [*Dutch] and Banana, in order to relaunch export activities in the country. Meanwhile, Antwerp itself is rapidly becoming a 'bioterminal' which imports raw and processed biomass and biofuels from all over the world to be distributed throughout Europe. In the future, the link might become more outspoken: 'bioterminal' Antwerp could become the importer of biofuels coming from 'bioport' Matadi or Banana.

One thing is certain, though: the Inga dam's enormous potential could power Africa out of electricity scarcity, and synergies between Congo's yet to be established bio-economy and the Inga could one day evolve into a highly efficient cluster of bioports and biorefineries, making Congo the Saudi Arabia of green energy.

Laurens Rademakers
Biopact, 2006, some rights reserved.

More information:

:: United Nations Environment Program: Congo River to Power Africa Out of Poverty - 24 February 2005
:: Afrol News: Congo River dam to industrialise Africa, Europe - February, 2005
:: Africa-energy.com: Large map of the Inga plans, showing a planned transcontinental grid to distribute the Inga electricity all over the continent and on to Europe (the same map can be found here).


Post a Comment

Links to this post:

Create a Link

<< Home